
ACS

(Al’s Circuit Simulator)

Users manual

Albert Davis

September 20, 1999

2

Contents

1 Introduction 7
1.1 What is it? . 7
1.2 Starting . 7
1.3 How to use this manual . 7
1.4 Command structure . 8
1.5 Standard options . 8
1.6 In case of difficulty . 9

2 Command descriptions 11
2.1 ! command . 12
2.2 < command . 12
2.3 > command . 13
2.4 AC command . 13
2.5 ALARM command . 14
2.6 ALTER command . 15
2.7 BUILD command . 15
2.8 CHDIR command . 15
2.9 CLEAR command . 15
2.10 DC command . 16
2.11 DELETE command . 17
2.12 DISTO command . 17
2.13 EDIT command . 17
2.14 END command . 18
2.15 EXIT command . 18
2.16 FANOUT command . 18
2.17 FAULT command . 18
2.18 FOURIER command . 19
2.19 GENERATOR command . 20
2.20 GET command . 21
2.21 HELP command . 22
2.22 IC command . 22
2.23 INSERT command . 22
2.24 LIST command . 22
2.25 LOG command . 23
2.26 MARK command . 23
2.27 MERGE command . 24

3

4 CONTENTS

2.28 MODIFY command . 24
2.29 NODESET command . 24
2.30 NOISE command . 24
2.31 OP command . 24
2.32 OPTIONS command . 25
2.33 PAUSE command . 30
2.34 PLOT command . 30
2.35 PRINT command . 31
2.36 QUIT command . 34
2.37 SAVE command . 34
2.38 SENS command . 34
2.39 STATUS command . 34
2.40 SWEEP command . 35
2.41 TEMP command . 35
2.42 TF command . 36
2.43 TITLE command . 36
2.44 TRANSIENT command . 36
2.45 UNFAULT command . 37
2.46 UNMARK command . 37
2.47 WIDTH command . 38

3 Circuit description 39
3.1 C: Capacitor . 39
3.2 D: Diode . 40
3.3 E: Voltage Controlled Voltage Source . 42
3.4 F: Current Controlled Current Source . 42
3.5 G: Voltage Controlled Current Source . 42
3.6 H: Current Controlled Voltage Source . 42
3.7 I: Independent Current Source . 43
3.8 J: Junction Field-Effect Transistor . 43
3.9 K: Coupled (Mutual) Inductors . 43
3.10 L: Inductor . 43
3.11 M: MOSFET . 44
3.12 Q: Bipolar Junction Transistor . 48
3.13 R: Resistor . 48
3.14 S: Voltage Controlled Switch . 48
3.15 T: Transmission Line . 48
3.16 U: Logic Device . 49
3.17 V: Independent Voltage Source . 50
3.18 W: Current Controlled Switch . 51
3.19 X: Subcircuit Call . 51
3.20 Y: Admittance . 51

4 Behavioral modeling 53
4.1 Conditionals . 54
4.2 Functions . 54
4.3 COMPLEX: Complex value . 56
4.4 EXP: Exponential time dependent value . 56

CONTENTS 5

4.5 GENERATOR: Signal Generator time dependent value . 56
4.6 POLY: Polynomial nonlinear transfer function . 57
4.7 POSY: Polynomial with non-integer powers . 57
4.8 PULSE: Pulsed time dependent value . 58
4.9 PWL: Piecewise linear function . 58
4.10 SFFM: Frequency Modulation time dependent value . 59
4.11 SIN: Sinusoidal time dependent value . 59
4.12 TANH: Hyperbolic tangent transfer function . 60

5 Installation 61

6 Technical Notes 65
6.1 Simulation methods . 65
6.2 Data Structures . 67
6.3 Performance . 67

6 CONTENTS

Chapter 1

Introduction

1.1 What is it?

ACS is a general purpose mixed analog and digital
circuit simulator. It performs nonlinear dc and tran-
sient analyses, fourier analysis, and ac analysis lin-
earized at an operating point. It is fully interactive
and command driven. It can also be run in batch
mode. The output is produced as it simulates. Spice
compatible models for the MOSFET (level 1, 2, 3,
and 6) and diode are included in this release.

Since it is fully interactive, it is possible to make
changes and re-simulate quickly. This makes ACS
ideal for experimenting with circuits as you might do
in an iterative design or testing design principles as
you might do in a course on circuits.

In batch mode it is mostly Spice compatible, so it
is often possible to use the same file for both ACS
and Spice.

The analog simulation is based on traditional n-
odal analysis with iteration by Newton’s method and
LU decomposition. An event queue and incremen-
tal matrix update speed up the solution considerably
for large circuits and provide some of the benefits of
relaxation methods but without the drawbacks.

It also has digital devices for true mixed mode sim-
ulation. The digital devices may be implemented as
either analog subcircuits or as true digital models.
The simulator will automatically determine which to
use. Networks of digital devices are simulated as dig-
ital, with no conversions to analog between gates.
This results in digital circuits being simulated faster
than on a typical analog simulator, even with behav-
ioral models.

ACS also has a simple behavioral modeling lan-
guage that allows simple behavioral descriptions of

most components including capacitors and inductors.
ACS is an ongoing research project. It is being

released in a preliminary phase in hopes that it will
be useful and that others will use it as a thrust or
base for their research.

1.2 Starting

To run this program, type and enter the command:
acs, from the command shell.

The prompt --> shows that the program is in the
command mode. You should enter a command. Nor-
mally, the first command will be to build a circuit,
or to get one from the disk. First time users should
turn to the examples section for further assistance.
There is a help command, in case you get lost.

To run in batch mode, use acs file. This will
run the file in batch mode. If it ends with an .end
command, it will exit when done, otherwise it will
revert to command mode.

1.3 How to use this manual

The best approach is to read this chapter, then read
the command summary at the beginning of chapter 2,
then run the examples in the tutorial section. Later,
when you want to use the advanced features, go back
for more detail.

This manual is designed as a reference for users who
are familiar with circuit design, and therefore does
not present information on circuit design but only
on the use of this program to analyze such a design.
Likewise, it is not a text in modeling, although the
models section does touch on it.

7

8 CHAPTER 1. INTRODUCTION

Throughout this manual, the following notation
conventions are used:

• Typewriter font represents exactly what you
type, or computer output.

• Underlined typewriter font is what you type,
in a dialogue with the computer.

• Command words are shown in mixed UPPER
and lower case. The upper case part must be
entered exactly. The lower case part is optional,
but if included must be spelled correctly.

• Italics indicate that you should substitute the
appropriate name or value.

• Braces { } indicate optional parameters.

• Ellipses (...) indicate that an entry may be re-
peated as many times as needed or desired.

1.4 Command structure

Commands are whole words, but usually you only
have to type enough of the word to make it unique.
The first three letters will almost always work. In
some cases less will do. The whole word is significant,
if used, and must be spelled correctly.

In files, commands must be prefixed with a dot (.).
This is done for compatibility with other simulation
programs, such as SPICE.

Command options should be separated by commas
or spaces. In some cases, the commas or spaces are
not necessary, but it is good practice to use them.

Upper and lower case are usually the same.
Usually options can be entered in any order. The

exceptions to this are numeric parameters, where the
order determines their meaning, and command-like
parameters, where they are executed in order. If pa-
rameters conflict, the last takes precedence.

In general, standard numeric parameters, such as
sweep limits, must be entered first, before any op-
tions.

Any line starting with * is considered a comment
line, and is ignored. Anything on any line following
a quote is ignored. This is mainly intended for files.

This program supports abbreviated notation for
floating point numeric entries. ‘K’ means kilo, or ‘e3’,

etc. ‘M’ and ‘m’ mean milli, not mega (for Spice com-
patibility). ‘Meg’ means mega. Of course, it will also
take the standard scientific notation. Letters follow-
ing values, without spaces, are ignored.

T = Tera = e12
G = Giga = e9
Meg = Mega = e6
K = Kilo = e3
m = milli = e-3
u = micro = e-6
n = nano = e-9
p = pico = e-12
f = femto = e-15

Files are written in this same format. To write
a file with standard scientific notation, append the
word Basic to the command.

1.5 Standard options

There are several options that are used in many com-
mands that have a consistent meaning.

Quiet Suppress all unnecessary output, such as in-
termediate results, disk reads, activity indica-
tors.

Echo Echo all disk reads to the console, as read from
the disk.

Basic Format the output for compatibility with oth-
er software with primitive input parsers, such as
C’s scanf and Basic’s input statements. It forces
exponential notation, instead of our standard ab-
breviated notation. Any numbers that would or-
dinarily be printed without an exponent are not
changed.

Pack Remove extra spaces from the output to save
space at the expense of readability.

< Take the input from a file. The file name follows
in the same line.

> Direct the output to a file. The file name follows.
If the file already exists, it will ask permission to
delete the old one and replace it with a new one
with the same name.

>> Direct the output to a file. If the file already
exists, the new data is appended to it.

1.6. IN CASE OF DIFFICULTY 9

1.6 In case of difficulty

This program is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

I do not promise any kind of support or assistance
to users. However, I plan to continue to improve it
and keep it reliable, so please send me any complaints
and suggestions you have. I will probably fix anything
that is clearly (to me) a malfunction. I may make
an improvement if I consider it worth the effort, but
you should not be surprised if I don’t think I can
spare time for it. The direction for enhancements is
primarily driven by research interests and funding. I
may provide some assistance to academic users at no
charge.

10 CHAPTER 1. INTRODUCTION

Chapter 2

Command descriptions

* Comment line.

! Pass a command to the operating system.

< Batch mode.

> Direct the “standard output” to a file.

AC Performs a small signal AC (frequency domain)
analysis. Sweeps frequency.

ALARM Select points in circuit check against limits.

ALTER Perform analyses in queue. Changes follow.
(Not implemented.)

BUILD Build a new circuit or change an existing one.

CHDIR Change current directory.

CLEAR Delete the entire circuit, titles, etc.

DC Performs a nonlinear DC analysis, for determin-
ing transfer characteristics. Sweeps DC input or
component values.

DELETE Delete a part, or group of parts.

DISTO SPICE command not implemented.

EDIT Edit the circuit description using your editor.

END Perform analyses in queue. New circuit follows.
(Implemented incorrectly.)

EXIT Exits the program. (Same as quit)

FANOUT List by node number, the branches that con-
nect to each node.

FAULT Temporarily change a component.

FOURIER Transient analysis, with results in frequency
domain. (Different from SPICE.)

GENERATOR View and set the transient analysis func-
tion generator.

GET Get a circuit from a disk file. Deletes old one
first.

HELP Requests advice on error messages, options,
command syntax.

IC Set transient analysis initial conditions. (Not im-
plemented.)

INSERT Insert a node number. (Make a gap.)

LIST List the circuit on the console.

LOG Save a record of commands.

MARK Mark this time point, so transient analysis will
restart here.

MERGE Get a circuit from disk. Add it the what is
already in memory.

MODIFY Change a value, node, etc. For very simple
changes.

NODESET Preset node voltages, to assist convergence.
(Not implemented.)

NOISE SPICE command not implemented.

OP Performs a nonlinear DC analysis, for determin-
ing quiescent operating conditions. Sweeps tem-
perature.

OPTIONS View and set system options. (Same as set.)

11

12 CHAPTER 2. COMMAND DESCRIPTIONS

PAUSE Wait for key hit, while in batch mode.

PLOT Select points in circuit (and their range) to plot.

PRINT Select which points in the circuit to print as
table.

QUIT Exits the program. (Same as exit.)

SAVE Save the circuit in a file.

SENS SPICE command not implemented.

STATUS Display resource usage, etc.

SWEEP Sweep a component. (Loop function.)

TEMP SPICE command not implemented.

TF SPICE command not implemented.

TITLE View and create the heading line for printouts
and files.

TRANSIENT Performs a nonlinear transient (time do-
main) analysis. Sweeps time.

UNFAULT Undo faults.

UNMARK Undo mark. Release transient start point.

WIDTH Set output width.

2.1 ! command

2.1.1 Syntax

! command

2.1.2 Purpose

Run a program, or escape to a shell.

2.1.3 Comments

Any command typed here will be passed to the sys-
tem for it to execute.

The bare command ! will spawn an interactive
shell. Exiting the shell will return.

2.1.4 Examples

! ls *.ckt Run the command ls *.ckt as if it
were a shell command.

! No arguments mean to spawn an interactive shell.

2.2 < command

2.2.1 Syntax

< filename
<< filename

2.2.2 Purpose

Run a simulation in batch mode. Gets the commands
and circuit from a disk file. << clears the old circuit,
first.

2.2.3 Comments

You can invoke the batch mode directly from the com-
mand that starts the program. The first command
line argument is considered to be an argument for
this command.

The file format is almost as you would type it on
the keyboard. Commands must be prefixed with a
dot, and circuit elements can be entered directly, as
if in build mode. This is compatible with Spice.

The log command makes a file as you work the
program, but the format is not correct for this com-
mand. To fix it, prefix commands with a dot, and
remove the build commands.

Any line that starts with * a comment line.
Any line that starts with . (dot) is a command.
Any line that starts with a letter is a component

to be added or changed.
A < command in the file transfers control to a new

file. Files can be nested.
A bare < in the file (or the end of the file) gives it

back to the console.
Unlike SPICE, commands are executed in order.

This can result in some surprises when using some
SPICE files. SPICE queues up commands, then exe-
cutes them in a predetermined order.

2.4. AC COMMAND 13

2.2.4 Examples

< thisone.ckt Activates batch mode, from the file
thisone.ckt, in the current directory.

< runit.bat Use the file runit.bat.

From the shell: on start up:

acs afile Start up the program. Start using the
file afile.ckt in batch mode, as if you entered
< afile as the first command.

acs <afile Start up the program. Start using the
file afile.ckt with commands as if you typed
them from the keyboard.

2.3 > command

2.3.1 Syntax

> file
>> file
>

2.3.2 Purpose

Saves a copy of all program output (except help) in
a file.

2.3.3 Comments

> creates a new file for this output. If the file already
exists, the old one is lost, and replaced by the new
one.
>> appends to an existing file, if it exists, otherwise

it creates one.
A bare > closes the file.

2.3.4 Examples

> run1 Save everything in a file run1 in the current
directory. If run1 already exists, the old one is
gone.

>> allof Save everything in a file allof. If allof
already exists, it is kept, and the new data is
added to the end.

> Close the file. Stop saving.

2.4 AC command

2.4.1 Syntax

AC {options ...} start stop stepsize {options
...}

2.4.2 Purpose

Performs a small signal, steady state, AC analysis.
Sweeps frequency.

2.4.3 Comments

The AC command does a linear analysis about an
operating point. It is absolutely necessary to do an
OP analysis first on any nonlinear circuit. Not doing
this is the equivalent of testing it with the power off.

Three parameters are normally needed for an AC
analysis: start frequency, stop frequency and step
size, in this order. If all of these are omitted, the
values from the most recent AC analysis are used.

If only one frequency is specified, a single point
analysis will be done.

If only a new step size is specified, the old start
and stop are kept and only the step size is changed.
This is indicated by a keyword: by, times, decade
or octave, or a symbol: + or *.

If the start frequency is zero, the program will still
do an AC analysis. The actual frequency can be con-
sidered to be the limit as the frequency approaches
zero. It is, therefore, still possible to have a non-zero
phase angle, but delays are not shown because they
may be infinite.

The nodes to look at must have been previously
selected by the print or plot command. This is
different fron Spice.

2.4.4 Options

+ stepsize Linear sweep. Add stepsize to get the next
step. Same as By.

* multiplier Log sweep. Multiply by multiplier to get
the next step.

> file Send results of analysis to file.

>> file Append results to file.

14 CHAPTER 2. COMMAND DESCRIPTIONS

By stepsize Linear sweep. Add stepsize to get the
next step. Same as +.

Decade steps Log sweep. Use steps steps per decade.

NOPlot Suppress plotting.

Octave steps Log sweep. Use steps steps per octave.

PLot Graphic output, when plotting is normally off.

Print Send results to printer.

Quiet Suppress console output.

TEmperature degrees Temperature, degrees C.

TImes multiplier Log sweep. Multiply by multiplier
to get the next step.

2.4.5 Examples

ac 10m A single point AC analysis at 10 mHz.

ac 1000 3000 100 Sweep from 1000 Hz to 3000 Hz
in 100 Hz steps.

ac 1000 3000 Octave Sweep from 1000 Hz to 3000
Hz in octave steps. Since the sweep cannot end
at 3000 Hz, in this case, the last step will really
be 4000 Hz.

ac by 250 Keep the same limits as before, but use
250 Hz steps. In this case, it means to sweep
from 1000 to 3000 Hz, because that it what it
was the last time.

ac 5000 1000 -250 You can sweep downward, if y-
ou want. Remember that the increment would
be negative.

ac 20 20k *2 Double the frequency to get the next
step.

ac 20k 20 *.5 You can do a log sweep downward,
too. A multiplier of less than one moves it down.

ac Do the same AC sweep again.

ac >afile Save the results in the file afile. The
file will look just like the screen. It will have
all probe points. It will be a plot, if plotting is
enabled. It will have the numbers in abbreviated
notation. (10 nanovolts is 10.n.)

2.5 ALARM command

2.5.1 Syntax

ALArm
ALArm mode points
ALArm mode + points
ALArm mode - points
ALArm mode CLEAR

2.5.2 Purpose

Select points in the circuit to check against user de-
fined limits.

2.5.3 Comments

The ‘alarm’ command selects points in the circuit to
check against limits. There is no output unless the
limits are exceeded. If the limits are exceeded a the
value is printed.

There are separate lists of probe points for each
type of analysis.

To list the points, use the bare command ‘alarm’.
Syntax for each point is parameter(node)(limits),

parameter(componentlabel)(limits), or parame-
ter(index)(limits). Some require a dummy index.

For more information on the data available see the
print command.

You can add to or delete from an existing list by
prefixing with + or -. alarm ac + v(3) adds v(3)
to the existing set of AC probes. alarm ac - q(c5)
removes q(c5) from the list. You can use the wildcard
characters * and ? when deleting.

2.5.4 Examples

alarm ac vm(12)(0,5) vm(13)(-5,5) Check mag-
nitude of the voltage at node 12 against a range
of 0 to 5, and node 13 against a range of -5 to 5
for AC analysis. Print a warning when the limits
are exceeded.

alarm op id(m*)(-100n,100n) Check current in
all mosfets. In op analysis, print a warning for
any that are outside the range of -100 to +100
nanoamps. The range goes both positive and
negative so it is valid for both N and P channel
fets.

2.8. CHDIR COMMAND 15

alarm tran v(r83)(0,5) p(r83)(0,1u) Check
the voltage and power of R83 in the next
transient analysis. The voltage range is 0 to 5.
The power range is 0 to 1 microwatt. Print a
warning when the range is exceeded.

alarm List all the probes for all modes.

alarm dc Display the DC alarm list.

alarm ac CLear Clear the AC list.

2.6 ALTER command

The Spice Alter command is not implemented. Sim-
ilar functionality is available from the sweep com-
mand.

2.7 BUILD command

2.7.1 Syntax

Build {line}

2.7.2 Purpose

Builds a new circuit, or replaces lines in an existing
one.

2.7.3 Comments

Build Lets you enter the circuit from the keyboard.
The prompt changes to > to show that the program
is in the build mode.

At this point, type in the circuit components in
standard (Spice type) netlist format.

Component labels must be unique. If not, the old
one is modified according to the new data, keeping
old values where no new ones were specified.

Ordinarily, components are added to the end of the
list. To insert at a particular place, specify the label
to insert in front of. Example: Build R77 will cause
new items to be added before R77, instead of at the
end.

In either case, components being changed or re-
placed do not change their location in the list.

If it is necessary to start over, delete all or clear
will erase the entire circuit in memory.

To exit this mode, enter a blank line.

2.7.4 Examples

build Build a circuit. Add to the end of the list.
This will add to the circuit without erasing any-
thing. It will continue until you exit or memory
fills up.

b This is the same as the previous example. Only
the first letter of the ‘Build’ is necessary.

build R33 Insert new items in front of R33.

2.8 CHDIR command

2.8.1 Syntax

ChDir {path}
CD {path}

2.8.2 Purpose

Changes or displays the current directory name.

2.8.3 Comments

Change the current directory to that specified by
path. See your system manual for complete syntax.

If no argument is given the current directory is dis-
played.

2.8.4 Examples

cd ../ckt Change the current working directory to
../ckt.

cd Show the current working directory name.

2.9 CLEAR command

2.9.1 Syntax

CLEAR

2.9.2 Purpose

Deletes the entire circuit, and blanks the title.

16 CHAPTER 2. COMMAND DESCRIPTIONS

2.9.3 Comments

The entire word clear is required.
Clear is similar to, but a little more drastic than

delete all.
After deleting anything, there is no way to get it

back.
See also: delete command.

2.9.4 Examples

clear Delete the entire circuit.

2.10 DC command

2.10.1 Syntax

DC start stop stepsize {options ...}
DC label start stop stepsize {options ...}

2.10.2 Purpose

Performs a nonlinear DC steady state analysis, and
sweeps the signal input, or a component value.

2.10.3 Status

Nesting of sweeps is not supported. (SPICE supports
two levels of nesting.)

2.10.4 Comments

The nodes to look at must have been previously se-
lected by the print or plot command.

If there are numeric arguments, without a part la-
bel, they represent a ramp from the generator func-
tion. They are the start value, stop value and step
size, in order. They are saved between commands, so
no arguments will repeat the previous sweep.

A single parameter represents a single input volt-
age. Two parameters instruct the computer to ana-
lyze for those two points only.

In some cases, you will get one more step outside
the specified range of inputs due to internal rounding
errors. The last input may be beyond the end point.

This command also sets up a movable operating
point for subsequent AC analysis, which can be helpful
in distortion analysis.

The program will sweep any simple component, in-
cluding resistors, capacitors, and controlled sources.
SPICE sweeps only fixed sources (types V and I).

2.10.5 Options

* multiplier Log sweep. Multiply the input by mul-
tiplier to get the next step. Do not pass zero
volts!!

> file Send results of analysis to file.

>> file Append results to file.

BY stepsize Linear sweep. Add stepsize to get the
next step.

Continue Use the last step of a OP, DC or Transient
analysis as the first guess.

Decade steps Log sweep. Use steps steps per decade.

LOop Repeat the sweep, backwards.

NOPlot Suppress plotting.

PLot Graphic output, when plotting is normally off.

Print Send results to printer.

Quiet Suppress console output.

REverse Sweep in the opposite direction.

TEmperature degrees Temperature, degrees C.

Times multiplier Log sweep. Multiply the input by
multiplier to get the next step. Do not pass zero
volts!!

TRace n Show extended information during solution.
Must be followed by one of the following:

Off No extended trace information (default,
override .opt)

Warnings Show extended warnings

Iterations Show every iteration.

Verbose Show extended diagnostics.

2.12. DISTO COMMAND 17

2.10.6 Examples

dc 1 Do a single point DC signal simulation, with ‘1
volt’ input.

dc -10 15 1 Sweep the circuit input from -10 to
+15 in steps of 1. (usually volts.) Do a DC
transfer simulation at each step.

dc With no parameters, it uses the same ones as the
last time. In this case, from -10 to 15 in 1 volt
steps.

dc 20 0 -2 You can sweep downward, by asking for
a negative increment. Sometimes, this will result
in better convergence, or even different results!
(For example, in the case of a bi-stable circuit.)

dc Since the last time used the input option, go
back one more to find what the sweep param-
eters were. In this case, downward from 20 to
0 in steps of 2. (Because we did it 2 commands
ago.)

dc -2 2 .1 loop After the sweep, do it again in the
opposite direction. In this case, the sweep is -2
to +2 in steps of .1. After it gets to +2, it will
go back, and sweep from +2 to -2 in steps of -.1.
The plot will be superimposed on the up sweep.
This way, you can see hysteresis in the circuit.

dc temperature 75 Simulate at 75 degrees, this
time. Since we didn’t specify new sweep param-
eters, do the same as last time. (Without the
loop.)

2.11 DELETE command

2.11.1 Syntax

DELete label ...
DELete ALL

2.11.2 Purpose

Remove a line, or a group of lines, from the circuit
description.

2.11.3 Comments

To delete a part, by label, enter the label. (Example
‘DEL R15’.) Wildcards ‘*’ and ‘?’ are allowed, in
which case, all that match are deleted.

To delete the entire circuit, the entire word ALL
must be entered. (Example ‘DEL ALL’.)

After deleting anything, there is usually no way to
get it back, but if a fault had been applied (see fault
command) restore may have surprising results.

2.11.4 Examples

delete all Delete the entire circuit, but save the
title.

del R12 Delete R12.

del R12 C3 Delete R12 and C3.

del R* Delete all resistors. (Also, any models and
subcircuits starting with R.)

2.12 DISTO command

The Spice disto command is not implemented. Sim-
ilar functionality is not available.

2.13 EDIT command

2.13.1 Syntax

Edit
Edit file

2.13.2 Purpose

Use your editor to change the circuit.

2.13.3 Comments

The edit command runs your editor on a copy of the
circuit in memory, then reloads it.
Edit file runs your editor on the specified file.
If you are only changing a component value, the

modify command may be easier to use.
The program uses the EDITOR environment variable

to find the editor to use. The command fails if there
is no EDITOR defined.

18 CHAPTER 2. COMMAND DESCRIPTIONS

2.13.4 Examples

edit Brings up your editor on the circuit.

edit .acsrc Edits the file .acsrc in your current
directory.

2.14 END command

The Spice END command is implemented incorrectly.
It behaves like Quit in batch files, or interactive mode
and is ignored otherwise.

2.15 EXIT command

2.15.1 Syntax

EXIt

2.15.2 Purpose

Terminates the program.

2.15.3 Comments

‘Quit’ also works.
Be sure you have saved everything you want to!

2.16 FANOUT command

2.16.1 Syntax

FANout {nodes}

2.16.2 Purpose

Lists connections to each node.

2.16.3 Comments

Fanout lists the line number and label of each part
connected to each node. If both ends of a part are
connected the same place, it is listed twice.

For a partial list, just specify the numbers. A num-
ber alone (17) says this branch alone. A trailing dash
(23-) says from here to the end. A leading dash (-33)
says from the start to here. Two numbers (9 13)
specify a range.

2.16.4 Examples

fanout Lists all the nodes in the circuit, with their
connections.

fanout 99 List parts connecting to node 99.

fanout 0 List the connections to node 0. (There
must be at least one, unless you are editing a
model.)

fanout 78- List connections to nodes 78 and up.

fanout 124 127 List connections to nodes 124, 125,
126, 127.

2.17 FAULT command

2.17.1 Syntax

FAult partlabel=value ...

2.17.2 Purpose

Temporarily change a component value.

2.17.3 Comments

This command quickly changes the value of a com-
ponent, usually with the intention that you will not
want to save it.

If you apply this command to a nonlinear or oth-
erwise strange part, it becomes ordinary and linear
until the fault is removed.

It is an error to fault a model call.
If several components have the same label, the fault

value applies to all of them. (They will all have the
same value.)

The unfault command restores the old values.

2.17.4 Example

fault R66=1k R66 now has a value of 1k, regardless
of what it was before.

fault C12=220p L1=1u C12 is 220 pf and L1 is 1
uH, for now.

unfault Clears all faults. It is back to what it was
before.

2.18. FOURIER COMMAND 19

2.18 FOURIER command

2.18.1 Syntax

Fourier start stop stepsize {options ...}

2.18.2 Purpose

Performs a nonlinear time domain (transient) analy-
sis, but displays the results in the frequency domain.

Start, stop, and stepsize are frequencies.

2.18.3 Comments

This command is slightly different and more flexible
than the SPICE counterpart. SPICE always gives
you the fundamental and 9 harmonics. ACS will do
the same if you only specify one frequency. SPICE
has the probes on the same line. ACS requires you
to specify the probes with the print command.

SPICE uses the last piece of a transient that was al-
ready done. ACS does its own transient analysis, con-
tinuing from where the most recent one left off, and
choosing the step size to match the Fourier Transform
to be done. Because of this the ACS Fourier analysis
is much more accurate than SPICE.

The nodes to look at must have been previously
selected by the print or plot command.

Three parameters are normally needed for a Fouri-
er analysis: start frequency, stop frequency and step
size, in this order.

If the start frequency is omitted it is assumed to be
0. The two remaining parameters are stop and step,
such that stop > step.

If only one frequency is specified, it is assumed to
be step size, which is equivalent to the fundamen-
tal frequency. The start frequency is zero and the
stop frequency is set according the harmonics option
(from the options command. The default is 9 har-
monics.

If two frequencies are specified, they are stop and
step. The order doesn’t matter since stop is always
larger than step.

Actually, this command does a nonlinear time do-
main analysis, then performs a Fourier transform on
the data to get the frequency data. The transien-
t analysis parameters (start, stop, step) are deter-
mined by the program as necessary to produce the
desired spectral results. The internal time steps are

selected to match the Fourier points, so there is no
interpolation done.

The underlying transient analysis begins where the
previous one left off. If you specify the ”cold” option,
it begins at time = 0. Often repeating a run will
improve the accuracy by giving more time for initial
transients to settle out.

See also: Transient command.

2.18.4 Options

> file Send results of analysis to file.

>> file Append results to file.

Cold Zero initial conditions. Cold start from power-
up.

Quiet Suppress console output.

SKip count Force at least count internal transient
time steps for each one used.

STiff Use a different integration method, that will
suppress overshoot when the step size is too s-
mall.

TEmperature degrees Temperature, degrees C.

TRACe n Show extended information during solution.
Must be followed by one of the following:

Off No extended trace information (default,
override .opt)

Warnings Show extended warnings

Alltime Show all accepted internal time steps.

Rejected Show all internal time steps including
rejected steps.

Iterations Show every iteration.

Verbose Show extended diagnostics.

2.18.5 Examples

fourier 1Meg Analyze the spectrum assuming a
fundamental frequency of 1 mHz. Use the
harmonics option to determine how many har-
monics (usually 9) to display.

20 CHAPTER 2. COMMAND DESCRIPTIONS

fourier 40 20k 20 Analyze the spectrum from 40
Hz to 20 kHz in 20 Hz steps. This will result in
a transient analysis with 25 micro-second steps.
(1 / 40k). It will run for .05 second. (1 / 20).

fourier 0 20k 20 Similar to the previous example,
but show the DC and 20 Hz terms, also.

fourier No parameters mean use the same ones as
the last time. In this case: from 0 to 20 kHz, in
20 Hz steps.

fourier Skip 10 Do 10 transient steps internally
for every step that is used. In this case it means
to internally step at 2.5 micro-second, or 10 steps
for every one actually used.

fourier Cold Restart at time = 0. This will show
the spectrum of the power-on transient.

2.19 GENERATOR command

2.19.1 Syntax

Generator {option-name=value ...}

2.19.2 Purpose

Sets up an input waveform for transient and
Fourier analysis. Emulates a laboratory type func-
tion generator.

2.19.3 Comments

This command sets up a singal source that is concep-
tually separate from the circuit. To use it, make the
value of a component ”generator(1)”, or substitute a
scale factor for the parameter.

The SPICE style input functions also work, but are
considered to be part of the circuit, instead of part of
the test equipment.

The parameters available are designed to emulate
the controls on a function generator. There are ac-
tually two generators here: sine wave and pulse. If
both are on (by setting non-zero parameters) the sine
wave is modulated by the pulse, but either can be
used alone.

Unless you change it, it is a unit-step function at
time 0. The purpose of the command is to change it.

This command does not affect AC or DC analysis
in any way. It is only for transient and Fourier
analysis. In AC analysis, the input signal is always a
sine wave at the analysis frequency.

Typical usage is the name of the control followed
by its value, or just plain Generator to display the
present values.

The actual time when switching takes place is am-
biguous by one time step. If precise time switching is
necessary, use the Skip option on the transient anal-
ysis command, to force more resolution. This ambi-
guity can usually be avoided by specifying finite rise
and fall times.

2.19.4 Parameters

Freq The frequency of the sine wave generator for a
transient analysis. The sine wave is modulated
by the pulse generator. A frequency of zero puts
the pulse generator on line directly.

Ampl The overall amplitude of the pulse and sine
wave. A scale factor. It applies to everything
except the offset and init values.

Phase The phase of the sine wave, at the instant it
is first turned on.

MAx The amplitude of the pulse, when it is ‘on’.
(During the width time) If the sine wave is on
(frequency not zero) this is the amplitude of the
sine wave during the first part of the period. The
max is scaled by ampl.

MIn The amplitude of the pulse, when it is ‘off’. (Af-
ter it falls, but before the next period begins.)
Although we have called these min and max,
there is no requirement that max be larger than
min. If the sine wave is on, this is its amplitude
during the second part of the period. The min
is scaled by ampl.

Offset The DC offset applied to the entire signal, at
all times after the initial delay. The offset is not
scaled by ampl.

Init The initial value of the pulse generator output.
It will have this value starting at time 0, until
Delay time has elapsed. It will never return to
this value, unless you restart at time 0.

2.20. GET COMMAND 21

Rise The rise time, or the time it takes to go from
MIn to MAx, or for the first rise, Init to MAx.
The rise is linear.

Fall The fall time. (The time required to go from
MAx back to MIn.)

Delay The waiting time before the first rise.

Width The length of time the output of the generator
has the value Max. A width of zero means that
the output remains high for the remainder of the
period. If you really want a width of zero, use a
very small number, less than the step size.

Period The time for repetition of the pulse. It must
be greater than the sum of rise + fall + width.
A period of zero means that the signal is not
periodic and so will not repeat.

2.19.5 Examples

The generator command ...

gen Display the present settings.

gen Freq=1k Sets the sine wave to 1 kHz. All other
parameters are as they were before.

gen Freq=0 Turns off the sine wave, leaving only the
pulse.

gen Ampl=0 Sets the amplitude to zero, which means
the circuit has no input, except for possibly a DC
offset.

gen Period=.001 Freq=1m Sets the period back to
1 millisecond. Applies 1 mHz modulation to the
pulse, resulting in a pulsed sine wave. In this
case, a 100 microsecond 10 volt burst, repeating
every millisecond. Between bursts, you will get
2.5 volts, with reversed phase. The old values,
in this case from 2 lines back (above) are kept.
(Ampl 5 Rise 10u Fall 10u ...)

gen Freq=60 Phase=90 Delay=.1 The sine wave
frequency is 60 Hertz. Its phase is 90 degrees
when it turns on, at time .1 seconds. It turns on
sharply at the peak.

A component using it ...

V12 1 0 generator(1) Use the generator as the cir-
cuit input through this voltage source. The DC
and AC values are 0.

V12 1 0 tran generator(1) ac 10 dc 5 Same as
before, except that the AC value is 10 and DC
value is 5.

Rinput 1 0 tran generator(1) Unlike SPICE,
the functions can be used on other components.
The resistance varies in time according to the
”generator”.

2.20 GET command

2.20.1 Syntax

GET filename

2.20.2 Purpose

Gets an existing circuit file, after clearing memory.

2.20.3 Comments

The first comment line of the file being read is taken
as the ‘title’. See the title command.

Comments in the circuit file are stored, unless they
start with *+ in which case they are thrown away.

‘Dot cards’ are set up, but not executed. This
means that variables and options are changed, but
simulation commands are not actually done. As
an example, the options command is actually per-
formed, since it only sets up variables. The ac card
is not performed, but its parameters are stored, so
that a plain ac command will perform the analysis
specified in the file.

Any circuit already in memory will be erased before
loading the new circuit.

2.20.4 Examples

get amp.ckt Get the circuit file amp.ckt from the
current directory.

get /usr/foo/ckt/amp.ckt Get the file amp.ckt
from the /usr/foo/ckt directory.

get npn.mod Get the file npn.mod.

22 CHAPTER 2. COMMAND DESCRIPTIONS

2.21 HELP command

2.21.1 Syntax

Help {subject}

2.21.2 Purpose

Provides on line documentation.

2.21.3 Comments

Help lists the commands.
Help Help lists the other subjects on which help is

available.
Help ERrors lists the error messages. The word

in the error message that is partially capitalized is
a keyword. Help followed by this word will tell you
more about that message.

Types of subjects available include commands,
command options, error messages, and circuit de-
scription.

In order for the Help command to work, the file
acs.hlp must be available somewhere in the executa-
bles search path. Usually the best place for it is the
same directory as acs.

2.21.4 Examples

help build Tells you about the ‘Build’ command.

help mosfet Tells you about the MOSFET model
usage.

help errors Lists the error messages. Strange look-
ing capitalization identifies keywords that will
tell you how to get more about a particular error
message.

help converge Gives details about the ‘did not
converge’ error message.

2.22 IC command

The Spice IC command is not implemented. Similar
functionality is not available.

2.23 INSERT command

2.23.1 Syntax

INsert node
INsert node, count

2.23.2 Purpose

Open up node numbers inside a circuit.

2.23.3 Comments

To open up an internal node, enter insert followed
by the number and how many. All node number-
s higher than the first number will be raised by the
second. The second (how many) is optional. If omit-
ted, 1 will be assumed.

2.23.4 Examples

insert 8 3 Insert 3 nodes before node 8. Adds 3
nodes (8,9,10) with no connections. Old node
numbers 8 and higher have 3 added to them to
make room. Old node 8 is now 11, 9 is now 12,
10 is now 13, 11 is 14, etc.

insert 6 Insert one node at 6. Old nodes 6 and
higher are incremented by 1. Old node 6 is now
7, 7 is 8, etc.

2.24 LIST command

2.24.1 Syntax

List {label ...}
List {label - label}

2.24.2 Purpose

Lists the circuit in memory.

2.24.3 Comments

Plain List will list the whole circuit on the console.
List with a component label asks for that one only.

Wildcards are supported: ? matches any character,
once. * matches zero or more of any character.

For several components, list them.
For a range, specify two labels separated by a dash.

2.26. MARK COMMAND 23

2.24.4 Examples

list List the entire circuit to the console.

list R11 Show the component R11.

list D12 - C5 List the part of the netlist from M12
to C5, inclusive. D12 must be before C5 in the
list.

list D* C* List all diodes and capacitors.

2.25 LOG command

2.25.1 Syntax

LOg file
LOg >> file
LOg

2.25.2 Purpose

Saves a copy of your keyboard entries in a file.

2.25.3 Comments

The ‘>>’ option appends to an existing file, if it exists,
otherwise it creates one.

Files can be nested. If you open one while another
is already open, both will contain all the information.

A bare LOg closes the file. Because of this, the last
line of this file is always LOg. Ordinarily, this will not
be of any consequence, but if a log file is open when
you use this file as command input, this will close it.
If more than one LOg file is open, they will be closed
in the reverse of the order in which they were opened,
maintaining nesting.

See also: ‘>’ and ‘<’ commands.

2.25.4 Bugs

The file is an exact copy of what you type, so it is
suitable for acs <file from the shell. It is NOT
suitable for the < command in acs or the Spice-like
mode acs file without <.

2.25.5 Examples

log today Save the commands in a file today in the
current directory. If today already exists, the
old one is gone.

log >> doit Save the commands in a file doit. If
doit already exists, it is kept, and the new data
is added to the end.

log runit.bat Use the file runit.bat.

log Close the file. Stop saving.

2.26 MARK command

2.26.1 Syntax

MArk

2.26.2 Purpose

Remember circuit voltages and currents.

2.26.3 Comments

After the mark command, the transient and
fourier analysis will continue from the values that
were kept by the mark command, instead of progress-
ing every time.

This allows reruns from the same starting point,
which may be at any time, not necessarily 0.

2.26.4 Examples

transient 0 1 .01 A transient analysis starting at
zero, running until 1 second, with step size .01
seconds. After this run, the clock is at 1 second.

mark Remember the time, voltages, currents, etc.

transient Another transient analysis. It continues
from 1 second, to 2 seconds. (It spans 1 second,
as before.) This command was not affected by
the mark command.

transient This will do exactly the same as the last
one. From 1 second to 2 seconds. If it were not
for mark, it would have started from 2 seconds.

24 CHAPTER 2. COMMAND DESCRIPTIONS

transient 1.5 .001 Try again with smaller steps.
Again, it starts at 1 second.

unmark Release the effect of mark.

transient Exactly the same as the last time, as if
we didn’t unmark. (1 to 1.5 seconds.)

transient This one continues from where the last
one left off: at 1.5 seconds. From now on, time
will move forward.

2.27 MERGE command

2.27.1 Syntax

MErge filename

2.27.2 Purpose

Gets an existing circuit file, without clearing memory.

2.27.3 Comments

The first comment line of the file being read is the
new title, and replaces the existing title.

Comments in the circuit file are stored, unless they
start with *+ in which case they are thrown away.

‘Dot cards’ are set up, but not executed. This
means that variables and options are changed, but
simulation commands are not actually done. As
an example, the options command is actually per-
formed, since it only sets up variables. The ac com-
mand is not performed, but its parameters are stored,
so that a plain ac command will perform the analysis
specified in the file.

Any circuit already in memory is kept. New ele-
ments with duplicate labels replace the old ones. New
elements that are not duplicates are added to the end
of the list, as if the files were appended.

2.27.4 Examples

merge amp.ckt Get the circuit file amp.ckt from the
current directory. Use it to change the circuit in
memory.

merge npn.mod Include the file npn.mod.

2.28 MODIFY command

2.28.1 Syntax

MOdify partlabel=value ...

2.28.2 Purpose

Quickly change a component value.

2.28.3 Comments

This command quickly changes the value of a com-
ponent. It is restricted to simply changing the value.

If several components have the same label or if
wildcard characters are used, all are changed.

2.28.4 Example

modify R66=1k R66 now has a value of 1k, regard-
less of what it was before.

modify C12=220p L1=1u C12 is 220 pf and L1 is 1
uH.

mod R*=22k All resistors are now 22k.

2.29 NODESET command

The Spice NODESET command is not implemented.
Similar functionality is not available.

2.30 NOISE command

The Spice NOIse command is not implemented. Sim-
ilar functionality is not available.

2.31 OP command

2.31.1 Syntax

OP start stop stepsize {options ...}

2.31.2 Purpose

Performs a nonlinear DC steady state analysis, with
no input. If a temperature range is given, it sweeps
the temperature.

2.32. OPTIONS COMMAND 25

2.31.3 Comments

There are substantial extensions beyond the capabil-
ities of the SPICE op command.

If there are numeric arguments, they represent a
temperature sweep. They are the start and stop tem-
peratures in degrees Celsius, and the step size, in or-
der. They are saved between commands, so no argu-
ments will repeat the previous sweep.

This command will use the op probe set, instead of
automatically printing all nodes and source currents,
so you must do ”print op” before running op.
We did it this way because we believe that printing
everything all the time is usually unnecessary clutter.
All of the information available from SPICE and more
is available here. See the print command and the
device descriptions for more details.

A single parameter represents a single temperature.
Two parameters instruct the computer to analyze for
those two points only.

This command also sets up the quiescent point for
subsequent AC analysis. It is necessary to do this for
nonlinear circuits. The last step in the sweep deter-
mines the quiescent point for the AC analysis.

2.31.4 Options

* multiplier Log sweep. Multiply the absolute tem-
perature by multiplier to get the next step. The
fact that it is offset to absolute zero may make
the step sizes look strange.

> file Send results of analysis to file.

>> file Append results to file.

BY stepsize Linear sweep. Add stepsize to get the
next step.

Continue Use the last step of a OP, DC or Transient
analysis as the first guess.

Input volts Apply volts input to the circuit, instead
of zero.

LOop Repeat the sweep, backwards.

PLot Graphic output, when plotting is normally off.

Print Send results to printer.

Quiet Suppress console output.

REverse Sweep in the opposite direction.

TAble Tabular output. Override default plot.

TEmperature degrees Temperature, degrees C. Over-
ride the sweep.

TImes multiplier Log sweep. Multiply the absolute
temperature by multiplier to get the next step.

TRace n Show extended information during solution.
Must be followed by one of the following:

Off No extended trace information (default,
override .opt)

Warnings Show extended warnings
Iterations Show every iteration.
Verbose Show extended diagnostics.

2.31.5 Examples

op 27 Do a DC operating point simulation at tem-
perature 27 degrees Celsius.

op -50 200 25 Sweep the temperature from -50 to
200 in 25 degree steps. Do a DC operating point
simulation at each step.

op With no parameters, it uses the same ones as the
last time. In this case, from -50 to 200 in 25
degree steps.

op 200 -50 -25 You can sweep downward, by ask-
ing for a negative increment.

op Input 2.3 Apply an input to the circuit of 2.3
volts. This overrides the default of no input.

op TEmperature 75 Simulate at 75 degrees, this
time. This isn’t remembered for next time.

op Since the last time used the TEmperature option,
go back one more to find what the sweep pa-
rameters were. In this case, downward from 200
to -50 in 25 degree steps. (Because we did it 3
commands ago.)

2.32 OPTIONS command

2.32.1 Syntax

OPTions
OPTions option-name value ...

26 CHAPTER 2. COMMAND DESCRIPTIONS

2.32.2 Purpose

Sets options, iteration parameters, global data.

2.32.3 Comments

Typical usage is the name of the item to set followed
by the value.

The bare command ‘OPTions’ displays the values.
These options control the simulation by specifying

how to handle marginal circumstances, how long to
wait for convergence, etc.

Most of the SPICE options are supported, more
have been added.

2.32.4 Parameters

ACCT Turns on accounting. When enabled, print the
CPU time used after each command, and a sum-
mary on exit in batch more. This does not affect
accounting done by the status command.

NOACCT Turns off accounting. (Not in SPICE.)

LIST Turns on echo of files read by get and merge
commands, and in batch mode. (SPICE option
accepted but not implemented.)

NOLIST Turns off list option. (Not in SPICE.)

MOD Enable printout of model parameters. (Accept-
ed, but not implemented, to complement NOMOD.)

NOMOD Suppress printout of model parameters.
(SPICE option accepted but not implemented.)

PAGE Enable page ejects at the beginning of simula-
tion runs. (Accepted, but not implemented, to
complement NOPAGE.)

NOPAGE Turn off page ejects. (SPICE option accept-
ed but not implemented.)

NODE Enable printing of the node table. (SPICE op-
tion accepted but not implemented.)

NONODE Disable printing of the node table. (Accept-
ed, but not implemented, to complement NODE.)

OPTS Enable printing of option values on every op-
tions command.

NOOPTS Disable automatic printing of option values.
Option values are only printed on a null options
command.

GMIN = x Minimum conductance allowed by the pro-
gram. (Default = 1e-12 or 1 picomho.) Every
node must have a net minimum conductance of
GMIN to ground. If effective open circuits are
found during the solution process (leading to a
singular matrix) a conductance of GMIN is forced
to ground, after printing an ”open circuit” error
message.

RELTOL = x Relative error tolerance allowed. (De-
fault =.001 or .1%.) If the ratio of successive
values in iteration are within RELTOL of one, this
value is considered to have converged.

ABSTOL = x Absolute error tolerance allowed. (De-
fault = 1e-12) If successive values in iteration are
within ABSTOL of each other, this value is consid-
ered to have converged.

VNTOL = x Absolute voltage error required to force
model re-evaluation. (Default = 1e-12 or 1 mi-
crovolt.) If the voltage at the terminals of a mod-
el is within VNTOL of the previous iteration, the
model is not re-evaluated. The old values are
used directly.

TRTOL = x Transient error “tolerance”. (Default =
7.) This parameter is an estimate of the factor
by which the program overestimates the actual
truncation error.

CHGTOL = x Charge tolerance. (Default = 1e-14) It
is used in step size control in transient analysis.

PIVTOL = x Pivot tolerance. (Default = 1e-13)
SPICE option accepted but not implemented.

PIVREL = x Pivot ratio. (Default = 1e-3) SPICE op-
tion accepted but not implemented.

NUMDGT = x Number of significant digits to print.
(Default = 4.) SPICE option accepted but not
implemented.

TNOM = x Nominal temperature. (Default = 27◦ C.)
All components have their nominal value at this
temperature.

2.32. OPTIONS COMMAND 27

ITL1 = x DC iteration limit. (Default = 100.) Set-
s the maximum number of iterations in a DC,
OP, or initial transient analysis allowed before
stopping and reporting that it did not converge.

ITL2 = x DC transfer curve iteration limit. (Default
= 50.) SPICE option accepted but not imple-
mented. Use ITL1 instead.

ITL3 = x Lower transient iteration limit. (Default =
4.) If the number of iterations is more than ITL3
the step size will not increase beyond its present
size. Otherwise, it can grow by trstepgrow.

ITL4 = x Upper transient iteration limit. (Default
= 10.) Sets the maximum number of iterations
on a step in transient analysis. If the circuit
fails to converge in this many iterations the step
size is reduced (by option trstepshrink), time is
backed up, and the calculation is repeated.

ITL5 = x Transient analysis total iteration limit.
(Default = 5000.) SPICE option accepted but
not implemented. Actual behavior is the same
as ITL5 = 0, in SPICE, which omits this test.

ITL6 = x Source stepping iteration limit. (Default
= 0.) SPICE option accepted but not imple-
mented. Source stepping is not available.

ITL7 = x Worst case analysis iteration limit. (De-
fault = 1.) Sets the maximum number of itera-
tions for the individual element trials in a DC or
bias worst case analysis. If more iterations than
this are necessary, the program silently goes on
to the next step, as if nothing was wrong, which
is usually the case.

ITL8 = x Convergence diagnostic iteration thresh-
old. (Default = 100.) If the iteration count on a
step exceeds ITL8 diagnostic messages are print-
ed in an attempt to aid the user in solving the
convergence problem.

CPTIME = x Total CPU job time limit. (Default =
30000.) SPICE option accepted but not imple-
mented. There is no limit imposed.

LIMTIM = x CPU time reserved for plotting. (De-
fault = 2.) SPICE option accepted but not im-
plemented.

LIMPTS = x Max number of points printed. (Default
= 201.) SPICE option accepted but not imple-
mented.

LVLCOD = x Matrix solution and allocation method.
(Default = 2, generate machine language.)
SPICE option not implemented.

LVLTIM = x Time step control method. (Default =
2, truncation error.) SPICE option not imple-
mented.

METHOD = x Integration method. (Default =
TRAPezoidal.) Possible values are:

EULER backware Euler, unless forced to other

EULERONLY backward Euler only

TRAP usually trap, but euler where better

TRAPONLY always trapezoid

DEFL = x MOSFET default channel length in meter-
s. (Default = 100u.)

DEFW = x MOSFET default channel width in meters.
(Default = 100u.)

DEFAD = x MOSFET default drain diffusion area in
square meters. (Default = 0.)

DEFAS = x MOSFET default source diffusion area in
square meters. (Default = 0.)

SEED = x Seed used by the random number gen-
erator. (Default = 1.) (ECA-2 equivalent =
Random.) (Not available in SPICE.) The same
random numbers will be used every time, deter-
mined by this seed number. Setting this to zero
is a special case, causing each run to start from
a random point.

WCZERO = x Worst case zero window. (Default = 1e-
9) (Not available in SPICE.) Sets a window for
the difference in a DC or bias worst case analy-
sis. Differences less than this are assumed to be
zero, for purposes of setting direction flags. This
prevents cluttering up the screen with very small
numbers that are essentially zero.

DAMPMAX = x Normal Newton damping factor. (De-
fault = 1.) Sets the damping factor for iteration
by damped Newton’s method, used when all is

28 CHAPTER 2. COMMAND DESCRIPTIONS

well. It must be between 0 and 1, as close to
1 as possible and still achieve convergence. The
useful range is from .9 to 1. Setting DAMPMAX too
low will probably cause convergence to a non-
sense result.

DAMPMIN = x Newton damping factor in problem
cases. (Default = .5) Sets the damping factor
for iteration by damped Newton’s method, used
when there are problems. It must be between
0 and 1, and is usually set somewhat less than
DAMPMAX. The useful range is from .5 to .9. Set-
ting it lower than .5 may cause convergence to a
nonsense result. Aside from that, a lower value
(but less than DAMPMAX) tends to improve robust-
ness at the expense of convergence speed.

DAMPSTrategy = x Damping strategy. (Default =
0) The actual damping factor to use is deter-
mined by heuristics. Normally the damping fac-
tor is DAMPMAX. It is reduced to DAMPMIN when
certain conditions occur, then it drifts back up
on subsequent iterations. This parameter turns
the various heuristics on or off. The number to
use is the sum of the following flags.

1 the second iteration on any voltage or time
step. (usually helps robustness, but always
increases iteration count.)

2 if the voltage at any nonlinear node exceeds
the range determined by VMIN, VMAX, and
LIMIT. (usually not desirable.)

4 if any device limiting algorithm is activated.
(usually not desirable.)

10 when any device crosses a region boundary.
(usually desirable and has little cost.)

20 when a FET or BJT is reversed. (usually
helps robustness. sometimes increases iter-
ation count.)

FLOOR = x Effective zero value. (Default = 1e-20)
Results values less than
FLOOR are shown as zero.

TEMPAMB = x Simulation temperature. (Default =
27◦ C.) Sets the ambient temperature, in degrees
Celsius. This is the temperature at which the
simulation takes place, unless changed by some
other command.

Short = x Resistance of voltage source or short.
(Default = 1e-7 or 10 µΩ.) Sets the default resis-
tance of voltage sources. In some cases, induc-
tors are replaced by resistors, if so, this is the
value. It is also the resistance used to replace
short circuits anywhere they are not allowed and
the program finds one.

TRansits = x Mixed mode transition count. (De-
fault = 2) Sets the number of “good” transitions
for a supposedly digital signal to be accepted as
digital.

IN = x Input width. (Default = 80.) Sets the last
column read from each line of input. Columns
past this are ignored. This option is present on-
ly for SPICE compatibility, through the width
command, which is an alias for options.

OUT = x Output width. (Default = 80.) Sets the
output print width, for tables and character
graphics.

XDivisions = x X axis divisions. (Default = 4) Sets
the number of divisions on the X axis for plot-
ting.

YDivisions = x Y axis divisions. (Default = 4) Sets
the number of divisions on the Y axis for plot-
ting.

ORder = x Equation ordering. (Default = auto.)
Determines how external node numbers are
mapped to internal numbers. The values are
FORward, REVerse, and AUTo.

MODe = x Simulation mode selection. (Default =
mixed.) Values are ANAlog, DIGital, and MIXed.
In analog mode, logic elements (type U) are re-
placed by their subcircuits as if they were type
X. In digital mode, logic elements are simulated
as digital regardless of whether the signals are
proper or not, as in traditional mixed-mode sim-
ulation. In mixed mode, logic elements may be
simulated as analog or digital depending on the
signals present.

BYPass Bypass model evaluation if appropriate. If
the last two iterations indicate that an element
is converged or dormant, do not evaluate it but
use its old values directly. (Default)

2.32. OPTIONS COMMAND 29

VBYpass Check only voltage to bypass model evalu-
ation. This produces a faster but possibly less
accurate simulation.

NOBYpass Do not bypass model evaluation.

LUBypass Bypass parts of LU decomposition if ap-
propriate. If only a few elements of the matrix
were changed solve only those parts of the LU
matrix that depend on them. (Default)

NOLUbypass Do not bypass parts of LU decomposi-
tion. Solve the entire LU matrix whenever a ma-
trix solution is called for regardless of whether it
is actually needed.

INCmode Incrementally update the matrix. Instead
of rebuilding the matrix on every iteration, keep
as much of the old matrix as possible and make
incremental changes. (Default)

NOIncmode Do not incrementally update the matrix.
This eliminates a possible cause of roundoff error
at the expense of a slower simulation.

TRACELoad Use a queue to only load changed ele-
ments to the matrix. This results in faster load-
ing and has no known drawbacks. (Default)

NOTRACELoad Do not use a queue to only load
changed elements to the matrix. Instead, load
all elements, even if they are unchanged or zero.
This is always slower, and is forced if ”noincmod-
e”.

LIMIT = x Internal differential branch voltage limit.
(Default = 1e10, essentially disabled.) All circuit
branch voltages may be limited to ±x to aid in
convergence. This is intended as a convergence
aid only. It may or may not help.

VMIN = x Negative node voltage limit. (Default =
-30) All node voltages may be limited to −x to
aid in convergence and prevent numeric overflow.
This is intended as a convergence aid only. It
may or may not help.

VMAX = x Positive node voltage limit. (Default =
30) All node voltages may be limited to +x to
aid in convergence and prevent numeric overflow.
This is intended as a convergence aid only. It
may or may not help.

DTMIn = x Minimum time step. (Default = 1e-12.)
The smallest internal time step in transient anal-
ysis. The transient command dtmin option
and the dtratio option override it if it is big-
ger.

DTRatio = x The ratio between minimum and max-
imum time step. (Default = 1e9).

RSTray Include series resistance in device model-
s. This creates internal nodes and results in a
significant speed and memory penalty. It also
makes convergence characteristics worse.

NORSTray Do not include series resistance in device
models. This results in faster simulations and
better numerical accuracy at the expense of mod-
el accuracy. Differences between rstray and
norstray have been observed to be insignifican-
t most of the time. Some popular commercial
versions of SPICE do not implement series resis-
tance at all, so norstray may be more consistent
with other simulators.(Default)

CSTray Include capacitance in device models. This
may create internal nodes and result in a signif-
icant speed and memory penalty. It also may
make convergence characteristics worse. (De-
fault)

NOCSTray Do not include capacitance in device mod-
els. This results in faster simulations and bet-
ter numerical accuracy at the expense of mod-
el accuracy. Differences between cstray and
nocstray are usually significant, since often the
strays are the dominant reactive elements.

Harmonics = x Harmonics in Fourier analysis. (De-
fault = 9) The number of harmonics to display
in a Fourier analysis, unless specified otherwise.

TRSTEPGrow = x The maximum internal step size
growth in transient analysis. (Default = 2.)

TRSTEPShrink = x The amount to decrease the
transient step size by when convergence fails.
(Default = 8.)

TRReject = x Transient error rejection threshold.
(Default = .5) Controls how bad the truncation
error must be to reject a time step. A value of

30 CHAPTER 2. COMMAND DESCRIPTIONS

.5 means that if the step reqested is smaller than

.5 times the step size used, the current step will
be rejected. If the new step is .8 times the old
step size it will be adjusted but the step just
calculated will not be rejected.

2.32.5 Examples

options Display the present settings.

options itl1=50 Allows 50 iterations in a dc or op
analysis.

2.33 PAUSE command

2.33.1 Syntax

PAuse comment

2.33.2 Purpose

Suspend batch mode. Wait for the user to hit a key.

2.33.3 Status

This command does not work on all systems, due to
buffering of console i/o.

2.33.4 Comments

Prints Continue? and waits for a key hit. Type ‘n’,
‘N’, escape or control-c to terminate the batch mode.
Type anything else to continue.

Any comment is ignored.

2.33.5 Examples

pause Try more gain

pause These both work the same. Ask to continue,
wait for a key hit, then go on.

2.34 PLOT command

2.34.1 Syntax

PLot
PLot mode points
PLot mode + points

PLot mode - points
PLot mode CLEAR

2.34.2 Purpose

Select points in the circuit for graphic output. Select
graphic output.

2.34.3 Status

The plotting leaves something to be desired. Only
two signals can be plotted at a time. The output file
is corrupt when plotting is on.

2.34.4 Comments

The ‘plot’ command selects where to look at the cir-
cuit, or where to hook the oscilloscope probe.

There are separate lists of probe points for each
type of analysis.

To list the probe points, use the bare command
‘plot’.

Syntax for each point is parameter(node)(limits),
parameter(componentlabel)(limits), or parame-
ter(index)(limits). Some require a dummy index.

For more information on the data available see the
print command.

You must set the scaling. If you do not, the default
range is fixed at -5 to 5. ACS cannot auto-scale be-
cause it generates the plot during simulation, so the
necessary information is not available yet. Spice can
auto-scale only because it waits for the simulation to
complete before producing any output.
Plot uses the same variables as print. See the

print command for a list of what is available.
The options plot and noplot on any analysis com-

mand turn plotting on and off a single run. The plot
command turns plotting on and tabular output off.
The print command turns plotting off and tabular
output on.

You can add to or delete from an existing list by
prefixing with + or -. plot ac + v(3) adds v(3)
to the existing set of AC probes. plot ac - q(c5)
removes q(c5) from the list. You can use the wildcard
characters * and ? when deleting.

Plotting is limited to 2 items.

2.35. PRINT COMMAND 31

2.34.5 Examples

plot ac vm(12)(0,5) vm(13)(-5,5) The magni-
tude of the voltage at node 12 with a range of 0
to 5, and node 13 with a range of -5 to 5 for AC
analysis.

plot dc v(r26) The voltage across R26 for DC
analysis. Since there is no range, default values
will be used.

plot tran v(r83)(0,5) p(r83)(0,1u) Plot the
voltage and power of R83 in the next transient
analysis. The voltage scale is 0 to 5. The power
scale is 0 to 1 microwatt.

plot List all the probes for all modes.

plot dc Display the DC plot list.

plot ac CLear Clear the AC list.

2.35 PRINT command

2.35.1 Syntax

PRint
PRint mode points
PRint mode + points
PRint mode - points
PRint mode CLEAR

2.35.2 Purpose

Select points in the circuit for tabular output. Select
tabular output.

2.35.3 Comments

The ‘print’ command selects where to look at the
circuit, or where to hook the voltmeter (ammeter,
watt meter, ohm meter, etc.) probe.

There are separate lists of probe points for each
type of analysis.

To list the probe points, use the bare command
‘print’.

On start-up, probes are not set. You must do the
command ‘print op v(nodes)’ or put ‘.print op
v(nodes)’ in the circuit file to get any output from
the op command.

Syntax for each point is parameter(node), param-
eter(componentlabel), or parameter(index). Some re-
quire a dummy index.

You can access components in subcircuits by
connecting the names with dots. For example:
R56.X67.Xone is R56 in X67 in Xone. Some built-in
elements, including diodes, transistors, and mosfets,
contain subcircuits with internal elements. Cgd.M12
is the gate to drain capacitor of mosfet M12.

If the component does not exist, you will get an
error message. If the component exists but the pa-
rameter is not valid for that type, there will be no
error message but the value printed will be obviously
bogus.

The options plot and noplot on any analysis com-
mand turn plotting on and off a single run. The plot
command turns plotting on and tabular output off.
The print command turns plotting off and tabular
output on.

You can add to or delete from an existing list by
prefixing with + or -. print ac + v(3) adds v(3)
to the existing set of AC probes. print ac - q(c5)
removes q(c5) from the list. You can use the wildcard
characters * and ? when deleting.

2.35.4 Node probes

Several parameters are available at each node.

All modes

V Voltage.

All except Transient

Z Impedance looking into the node.

Transient, DC, OP only

Logic A numeric interpretation of the logic value at
the node. The value is displayed encoded in a
number of the form a.bc where a is the logic s-
tate: 0 = logic 0, 1 = rising, 2 = falling, 3 = logic
1. b is an indication of the quality of the digital
signal. 0 is a fully valid logic signal. Nonzero
indicates it does not meet the criteria for logic
simulation. c indicates how the node was calcu-
lated: 0 indicates logic simulation. 1 indicates

32 CHAPTER 2. COMMAND DESCRIPTIONS

analog simulation of a logic device. 2 indicates
analog simulation of analog devices.

AC only

VM Voltage magnitude.

VDB Decibels relative to 1 volt.

VP Voltage phase.

ZM Port impedance magnitude.

ZP Port impedance phase. Negative phase is capaci-
tive. Positive phase is inductive.

ZR Port impedance real part.

ZI Port impedance imaginary part.

2.35.5 Status probes

There are several status variables that can be probed.

All modes

Temperature(0) The simulation temperature in de-
grees Celsius.

TIme(0) The current time in a transient analysis. In
AC analysis it shows the time at which the bias
point was set, 0 if it was set in a DC or OP
analysis, or -1 if it is the bias was not set (power
off).

Transient, DC, OP only

GEnerator The output of the “signal generator”. In
a transient analysis, it shows the output of the
signal generator, as set up by the generator
command. In a DC analysis, it shows the DC
input voltage (not the power supply). In an OP
analysis, it shows the DC input, normally zero.

ITer(0) The number of iterations needed for conver-
gence for this printed step including any hidden
steps.

ITer(1) The number of iterations needed for con-
vergence for this printed step not including any
hidden steps.

ITer(2) The total number of iterations needed since
startup including check passes.

Control(0) A number indicating why the simulator
chose this time to simulate at.

1 The user requested it. One of the steps in a
sweep.

2 A discrete event. An element required a solu-
tion at this time.

3 The effect of the “skip” parameter.

4 The iteration count exceeded ITL4 so the last
step was rejected and is being redone at a
smaller time step.

5 The iteration count exceeded ITL3 so the time
interval is the same as it was last time.

6 Determined by local truncation error or some
other device dependent approximation in
hopes of controlling accuracy.

7,8 The step size was limited to twice the pre-
vious step size.

9 The step size was reduced to half the interval
to an event to avoid a tiny next step.

10 + x The previous step was rejected.

20 + x A zero time step was replaced by mrt.

30 + x The required step size less than mrt, so
it was replaced by mrt.

Control(1) The number internal time steps. (1 if all
steps are printed. One more than the number of
hidden steps.)

2.35.6 Element probes

Each element type has several parameters that can be
probed. In general, the form is Parameter(element).
Wild cards are allowed in element names to allow
probing the same parameter of a group of elements.

For components in a subcircuit, the names are con-
nected with dots. For example R12.X13 is R12 in the
subcircuit X13.

Most two node elements (capacitors, inductors, re-
sistors, sources) have at least the following parame-
ters available. Others are available for some elements.

2.35. PRINT COMMAND 33

All modes

V Branch voltage. The first node in the net list is
assumed positive.

I Branch current. It flows into the first node in the
net list, out of the second.

P Branch power. Positive power indicates dissipa-
tion. Negative power indicates that the part is
supplying power. Its value is the same as (PD -
PS). In AC analysis, it is the real part only.

EV The effective value of the part, in its units. If the
part is ordinary, it will just show its value, but
if it is time variant or nonlinear, it shows what
it is now.

R Resistance. The effective resistance of the part,
in ohms. In AC analysis, shows the magnitude
of the self impedance. In OP, DC or TRansient
analysis, shows its incremental resistance. In
TRansient analysis, it shows the effective Z-
domain resistance of inductors and capacitors.

Y Admittance.

All except Transient

Z Impedance at a port. The port impedance seen
looking into the circuit across the branch. It does
not include the part itself. In transient analy-
sis, it shows the effective Z-domain impedance,
which is a meaningless number if there are ca-
pacitors or inductors in the circuit.

Transient, DC, OP only

These parameters are available in addition to the
above.

PD Branch power dissipated. The power dissipated
in the part. It is always positive and does not
include power sourced.

PS Branch power sourced. The power sourced by the
part. It is always positive and does not consider
its own dissipation.

F The result of evaluating the function related to
the part. It is the voltage across a resistor, the
charge stored in a capacitor, the flux in an in-
ductor, etc.

AC only

These parameters are available in addition to the
above.

VM Voltage magnitude.

VDB Decibels relative to 1 volt.

VP Voltage phase.

IM Current magnitude.

IDB Decibels relative to 1 amp.

IP Current phase.

P Real power.

PDB Decibels relative to 1 watt real power.

PX Reactive (imaginary) power, volt-amps reactive.

PXDB Decibels relative to 1 va reactive.

PM Volt amps, complex power.

PMDB Decibels relative to 1 va.

PP Power phase (angle between voltage and current).
Negative phase is capacitive. Positive phase is
inductive.

PF Power factor (cosine of power phase).

RM Self impedance magnitude.

RP Self impedance phase. Negative phase is capaci-
tive. Positive phase is inductive.

RR Resistance, self impedance real part.

RI Reactance, self impedance imaginary part.

YM Self admittance magnitude.

YP Self admittance phase. Negative phase is capaci-
tive. Positive phase is inductive.

YR Conductance, self admittance real part.

YI Self admittance imaginary part.

ZM Port impedance magnitude.

ZP Port impedance phase. Negative phase is capaci-
tive. Positive phase is inductive.

ZR Port impedance real part.

ZI Port impedance imaginary part.

34 CHAPTER 2. COMMAND DESCRIPTIONS

2.35.7 Examples

print ac v(12) v(13) v(14) The voltage at n-
odes 12, 13, and 14 for AC analysis.

print dc v(r26) The voltage across R26, for DC
analysis.

print tran v(r83) p(r83) Voltage and power of
R83, for transient analysis.

print dc i(c8) p(r5) z(r5) The current through
C8, power dissipated in R5, and the impedance
seen looking into the circuit across R5.

print op v(nodes) The voltage at all nodes for the
op command.

print List all the probes, for all modes.

print op Display the OP probe list.

print ac clear Clear the AC list.

2.36 QUIT command

2.36.1 Syntax

Quit

2.36.2 Purpose

Terminates the program.

2.36.3 Comments

‘exit’ also works.
Be sure you have saved everything you want to!

2.37 SAVE command

2.37.1 Syntax

SAve filename {options ...}

2.37.2 Purpose

Saves the circuit on the disk.

2.37.3 Comments

The file is in an ASCII format, so the list may be
used as part of a report. It is believed to be compat-
ible with other simulators such as Berkeley Spice to
the extent that the capabilities are the same. Com-
patibility with commercial Spice derivatives may be a
problem because they all have proprietary extensions
and are incompatible with each other.

If the file name specified already exists, the old
file is deleted and replaced by a new file of the same
name, after asking you for permission.

You can save a part of a circuit. See the list
command for more details.

2.37.4 Examples

save works.ckt Save the circuit in the file
works.ckt, in the current directory.

save Save the circuit. Since you did not specify a file
name, it will ask for one.

save partof.ckt R* Save a partial circuit, just the
resistors, to the file partof.ckt. (See the List
command.)

save /client/sim/ckt/no33 You can specify a
path name.

2.38 SENS command

The Spice SENS command is not implemented. Simi-
lar functionality is not available.

2.39 STATUS command

2.39.1 Syntax

STatus

2.39.2 Purpose

Shows information on how the system resources are
being utilized.

2.41. TEMP COMMAND 35

2.40 SWEEP command

2.40.1 Syntax

SWeep {stepcount} partlabel=range ...

2.40.2 Purpose

Sweep a component (or group of components) over a
range. Set up a loop for iteration.

2.40.3 Comments

This command begins a loop which will sweep a com-
ponent or group of components.

When this command is given, the only apparent
actions will be a change in the prompt from ‘-->’ to
‘>>>’, and some disk action.

The different prompt means that commands are
not executed immediately, but are stored in a tempo-
rary file.

The bare command will repeat the same command
sequence as the last time SWeep was run, and not
prompt for anything else.

Additional components can be swept at the same
time by entering a ‘FAult’ command at the ‘>>>’
prompt. The ‘FAult’ behaves differently here: It ac-
cepts a range, which is the sweep limits.

The ‘GO’ command will end the entry sequence, and
make it all happen. After this, the values are re-
stored. (Also, all FAults are restored, as if by the
‘Restore’ command.)

All commands can be used in this mode. Of course,
some of them are not really useful (Quit) because
they work as usual.

Only linear, ordinary parts can be swept. (No semi-
conductor devices, or elements using behavioral mod-
eling.) The tolerance remains unchanged. If you at-
tempt to sweep a nonlinear or otherwise strange part,
it becomes ordinary and linear during the sweep.

2.40.4 Example

-->sweep 5 R14=1,100k R15=100k,1
>>>list
>>>ac 500 2k oct
>>>go

This sequence of commands says to simultaneously
sweep R14 and R15 in 5 steps, in opposite directions,
list the circuit and do an AC analysis for each step.

Assuming the circuit was:

R14 1 0 50k
R15 2 0 50k

The result of this sequence would be:

R14 1 0 1
R15 2 0 100k

an AC analysis

R14 1 0 25.75k
R15 2 0 75.25k

an AC analysis

R14 1 0 50.5k
R15 2 0 50.5k

an AC analysis

R14 1 0 75.25k
R15 2 0 25.75k

an AC analysis

R14 1 0 100k
R15 2 0 1

an AC analysis
After all this is done, the circuit is restored, so list

would show:

R14 1 0 50k
R15 2 0 50k

You could accomplish the same thing by entering
fault commands at the ‘>>>’ prompt.

-->sweep 5
>>>fault R14=1, 100k
>>>fault R15=100k, 1
>>>list
>>>ac 500 2k oct
>>>go

2.41 TEMP command

The Spice TEmp command is not implemented. Simi-
lar functionality is available by sweeping the op com-
mand.

36 CHAPTER 2. COMMAND DESCRIPTIONS

2.42 TF command

The Spice TF command is not implemented. Similar
functionality is not available.

2.43 TITLE command

2.43.1 Syntax

TItle
TItle a line of text

2.43.2 Purpose

View and create the heading line for printouts and
files.

2.43.3 Comments

There is a header line at the beginning of every file,
to help you identify it in the future. This command
sets up what it says. It also sets up a heading for
printouts and graphs.

When you use the ‘get’ command to bring in a
new circuit, it replaces the title with the one in the
file. The ‘title’ command lets you change it, for the
next time it is written out.

2.43.4 Examples

title This is a test. Sets the file heading to
‘This is a test.’ In the future, all files writ-
ten will have ‘This is a test.’ as their first
line.

title Displays the file heading. In this case, it prints
‘This is a test.’

2.44 TRANSIENT command

2.44.1 Syntax

Transient start stop stepsize {options ...}
Transient stepsize stop start {options ...}

2.44.2 Purpose

Performs a nonlinear time domain (transient) analy-
sis.

2.44.3 Comments

The nodes to look at must have been previously se-
lected by the Print or Plot command.

Three parameters are normally needed for a Tran-
sient analysis: start time, stop time and step size, in
this order. The SPICE order (step size, stop, start)
is also acceptable. An optional fourth parameter is
the maximum internal time step.

If all of these are omitted, the simulation will con-
tinue from where the most recent one left off, with the
same step size, unless the circuit topology has been
changed. It will run for the same length of time as
the previous run.

Do not use a step size too large as this will result
in errors in the results. If you suspect that the results
are not accurate, try a larger argument to ‘Skip’. This
will force a smaller internal step size. If the results
are close to the same, they can be trusted. If not,
try a still larger ‘Skip’ argument until they appear to
match close enough.

The most obvious error of this type is aliasing. Y-
ou must select sample frequency at least twice the
highest signal frequency that exists anywhere in the
circuit. This frequency can be very high, when you
use the default step function as input. The signal
generator does not have any filtering.

2.44.4 Options

> file Send results of analysis to file.

>> file Append results to file.

Cold Zero initial conditions. Cold start from power-
up.

DTMIn = x Minimum time step. (Default = from
options) The smallest internal time step in tran-
sient analysis. The transient command dtmin
option and the dtratio option override it if it is
bigger.

DTRatio = x The ratio between minimum and max-
imum time step. (Default = from options).

NOPlot Suppress plotting.

PLot Graphic output, when plotting is otherwise off.

Quiet Suppress console output.

2.45. UNFAULT COMMAND 37

Skip count Force at least count simulation steps for
each one displayed. If the output is a table or
ASCII plot, the extra steps are hidden.

TEmperature degrees Temperature, degrees C.

TRace n Show extended information during solution.
Must be followed by one of the following:

Off No extended trace information (default,
override .opt)

Warnings Show extended warnings

Alltime Show all accepted internal time steps.

Rejected Show all internal time steps including
rejected steps.

Iterations Show every iteration.

Verbose Show extended diagnostics.

UIC Use initial conditions. ACS will use the values
specified with the IC = options on the various
elements.

2.44.5 Examples

transient 0 100u 10n Start at time 0, stop after
100 micro-seconds. Simulate using 10 nanosec-
ond steps.

transient No parameters mean to continue from the
last run. In this case it means to step from 100
us to 200 us in 10 ns steps. (The same step size
and run length, but offset to start where the last
one stopped.

transient skip 10 Do 10 extra steps internally for
every step that would be done otherwise. In this
case it means to internally step at 1 nanosecond.
If the output is in tabular form, the extra steps
are hidden.

transient 0 Start over at time = 0. Keep the same
step size and run length.

transient cold Zero initial conditions. This will
show the power-on transient.

transient >arun Save the results of this run in the
file arun.

2.45 UNFAULT command

2.45.1 Syntax

UNFault

2.45.2 Purpose

Undo any action from fault commands.

2.45.3 Comments

This command reverses the action of all fault com-
mands.

It will also clean up any side effects of an aborted
sweep command.
Unfault is automatically invoked on any clear

command.
If you change the circuit in any other way, unfault

will bring back the old on top of the changes. This
can bring on some surprises.

2.45.4 Example

fault R66=1k R66 now has a value of 1k, regardless
of what it was before.

unfault Clears all faults. In this case, R66 has its
old value again.

unfault can bring on surprises. Consider this se-
quence ...

V1 1 0 ac 1
C3 1 2 1u
R4 2 0 10k

fault C3=100p C3 is 100 picofarads, for now.

modify C3=220p C3 is 220 pf, for now. It will be
restored.

modify R4=1k R4 is 1k. It will not be restored.

restore C3 back to 1 uf, but R4 still 1k.

2.46 UNMARK command

2.46.1 Syntax

UNMark

38 CHAPTER 2. COMMAND DESCRIPTIONS

2.46.2 Purpose

Forget remembered circuit voltages and currents.
Undo the ‘mark’ command.

2.46.3 Comments

Allow time to proceed. It has been held back by the
‘mark’ command.

2.46.4 Examples

transient 0 1 .01 A transient analysis starting at
zero, running until 1 second, with step size .01
seconds. After this run, the clock is at 1 second.

mark Remember the time, voltages, currents, etc.

transient Another transient analysis. It continues
from 1 second, to 2 seconds. (It spans 1 second,
as before.) This command was not affected by
the mark command.

transient This will do exactly the same as the last
one. From 1 second to 2 seconds. If it were not
for mark, it would have started from 2 seconds.

transient 1.5 .001 Try again with smaller steps.
Again, it starts at 1 second.

unmark Release the effect of mark.

transient Exactly the same as the last time, as if
we didn’t unmark. (1 to 1.5 seconds.)

transient This one continues from where the last
one left off: at 1.5 seconds. From now on, time
will move forward.

2.47 WIDTH command

2.47.1 Syntax

Width {IN=value} {OUT=value}

2.47.2 Purpose

Set input and output width.

2.47.3 Comments

The ‘width’ command is the same as the ‘options’
command. It is provided for SPICE compatibility.
SPICE uses width to set two parameters: in and
out, which we set with the options command.

Chapter 3

Circuit description

To describe a circuit, you must provide a ‘netlist’.
The netlist is simply a list of the components with
their connections and values. The format is essen-
tially the same as the standard SPICE format.

Before doing this, number the nodes on your
schematic. (A node is a place where parts connect
together.) Then, each part gets a line in the netlist
(circuit description). In its simplest form, which you
will use most of the time, it is just the type, such as
‘R’ for resistor, or a label, like ‘R47’, followed by the
two nodes it connects to, then its value.

Example: ‘R29 6 8 22k’ is a 22k resistor between
nodes 6 and 8.

Node 0 is used as a reference for all calculations
and is assumed to have a voltage of zero. (This is
the ground, earth or common node.) Nodes must
be nonnegative integers, but need not be numbered
sequentially.

There should be a DC path through the circuit to
node 0 from every node that is actually used. The cir-
cuit cannot contain a cutset of current sources and/or
capacitors. If either of these cases occurs, it will be
discovered during analysis. The program will attemp-
t to correct the error, issue an ‘open circuit’ error
message and continue. This is rarely a problem with
real circuits. Most circuits have such a path, however
indirect.

Semiconductor devices require both a device state-
ment, and a .model statement (or “card”). The de-
vice statement, described in the Circuit description
chapter, defines individual devices as variations from
a prototype, as is required for different devices on the
same substrate. The model statement, described in
this chapter, defines process dependent parameters,
which usually apply to all devices on a substrate.

The .model card syntax is:

.model mname type {args}

Mname is the model name, which elements will use
to refer to this model. Type is one of several types of
built-in models. Args is a list of the parameters, of
the form name=value.

D Diode model

NMOS N-channel MOSFET model

PMOS P-channel MOSFET model

LOGIC Logic family description

SW Voltage controlled switch

CSW Current controlled switch

3.1 C: Capacitor

3.1.1 Syntax

Cxxxxxxx n+ n– value
Cxxxxxxx n+ n– value {METHOD=method}
{IV=initial-voltage}

3.1.2 Purpose

Capacitor, or general charge storage element.

39

40 CHAPTER 3. CIRCUIT DESCRIPTION

3.1.3 Comments

N+ and n– are the positive and negative element n-
odes, respectively. Value is the capacitance in Farads.

Specifying a METHOD overrides the default method
from the options command. The valid methods are
the same.

The (optional) initial condition is the initial (time
= 0) value of the capacitor voltage (in Volts). Note
that the initial conditions (if any) apply only if the
UIC option is specified on the transient command.

3.2 D: Diode

3.2.1 Syntax

Dxxxxxxx n+ n– mname {area} {args}

3.2.2 Purpose

Junction diode.

3.2.3 Comments

N+ and n– are the positive and negative element n-
odes, respectively. Mname is the model name. Area
is the area factor. If the area factor is omitted, a
value of 1.0 is assumed. Args is a list of additional
arguments. The parameters available are a superset
of those available in SPICE.

A diode can also use a MOSFET model (type NMOS
or PMOS) to represent the equivalent of the source-
bulk or drain-bulk diodes.

When the element is printed out, by a list or save
command, the the computed values of IS, RS, CJ,
and CJSW are printed as a comment if they were not
explicitly entered.

3.2.4 Element Parameters

Area = x Area factor. (Default = 1.0) If optional
parameters IS, RS, and CJO are not specified, the
.model value is multiplied by area to get the
actual value.

Perim = x Perimeter factor. (Default = 1.0) If
optional parameter CJSW is not specified, the
.model value is multiplied by perim to get the
actual value.

IC = x Initial condition. The initial voltage to use
in transient analysis, if the UIC option is speci-
fied. Default: don’t use initial condition. This is
presently ignored, but accepted for compatibili-
ty.

OFF Start iterating with this diode off, in DC analy-
sis.

STIFF Use a stiffly stable integration method and ig-
nore truncation error.

IS = x Saturation current. This overrides IS in the
.model, and is not affected by area. Default:
use IS from .model * area.

RS = x Ohmic (series) resistance. This overrides RS
in the .model, and is not affected by area. De-
fault: use RS from .model * area. This is p-
resently ignored, but accepted for compatibility.

CJ = x Zero-bias junction capacitance. This over-
rides CJ in the .model, and is not affected by
area. Default: use CJ from .model * area.

CJSW = x Zero-bias sidewall capacitance. This over-
rides CJSW in the .model, and is not affected by
perim. Default: use CJSW from .model * perim.

3.2.5 Model Parameters

IS = x Normalized saturation current. (Amperes).
(Default = 1.0e-14) IS is multiplied by the area
in the element statement to get the actual satu-
ration current. It may be overridden by specify-
ing IS in the element statement.

RS = x Normalized ohmic resistance. (Ohms) (De-
fault = 0.) RS is multiplied by the area in the
element statement to get the actual ohmic re-
sistance. It may be overridden by specifying RS
in the element statement. RS is accepted, and
silently ignored, for compatibility, but not im-
plemented.

N = x Emission coefficient. (Default = 1.0) In ECA-
2 the default value was 2.

TT = x Transit time. (Default = 0.) The diffusion
capacitance is given by: cd = TTgd where gd is
the diode conductance.

3.2. D: DIODE 41

VJ = x Junction potential. (Default = 1.0) Used in
computation of capacitance. For compatibility
with older versions of SPICE, PB is accepted as
an alias for VJ.

CJo = x Normalized zero-bias depletion capaci-
tance. (Default = 0.) CJo is multiplied by the
area in the element statement to get the actual
zero-bias capacitance. It may be overridden by
specifying CJ in the element statement.

Mj = x Grading coefficient. (Default = 0.5)

CJSw = x Normalized zero-bias sidewall capacitance.
(Default = 0.) CJSw is multiplied by the perime-
ter in the element statement to get the actual
zero-bias capacitance. It may be overridden by
specifying CJSW in the element statement.

MJSw = x Sidewall grading coefficient. (Default =
0.33)

EG = x Activation energy. (electron Volts) (Default
= 1.11, silicon.) For other types of diodes, use:

1.11 ev. Silicon (default value)
0.69 ev. Schottky barrier
0.67 ev. Germanium
1.43 ev. GaAs
2.26 ev. GaP

XTI = x Saturation current temperature exponent.
(Default = 3.0) For Schottky barrier, use 2.0.

KF = x Flicker noise coefficient. (Default = 0.)
SPICE parameter accepted but not implement-
ed.

AF = x Flicker noise exponent. (Default = 1.0)
SPICE parameter accepted but not implement-
ed.

FC = x Coefficient for forward bias depletion capac-
itance formula. (Default = 0.5)

BV = x Reverse breakdown voltage. (Default = ∞.)
SPICE parameter accepted but not implement-
ed.

IBV = x Current at breakdown voltage. (Default =
1 ma.) SPICE parameter accepted but not im-
plemented.

STIFF Use a stiffly stable integration method and ig-
nore truncation error.

3.2.6 Probes

Vd Voltage. The first node (anode) is assumed posi-
tive.

Id Total current. It flows into the first node (anode),
out of the second (cathode). I(Dxxxx) is the
same as IJ(Dxxxx) + IC(Dxxxx).

IJ Junction current. The current through the junc-
tion. IJ(Dxxxx) is the same as I(Yj.Dxxxx).

IC Capacitor current. The current through the
parallel capacitor. IC(Dxxxx) is the same as
I(Cj.Dxxxx).

P Power. P(Dxxxx) is the same as PJ(Dxxxx) +
PC(Dxxxx).

PD Power dissipated. The power dissipated as heat.
It is always positive and does not include power
sourced. It should be the same as P because the
diode is passive.

PS Power sourced. The power sourced by the part. It
is always positive and does not consider its own
dissipation. It should be 0 because the diode is
passive.

PJ Junction power. PJ(Dxxxx) is the same as
P(Yj.Dxxxx).

PC Capacitor power. PC(Dxxxx) is the same as
P(Cj.Dxxxx).

Cap Effective capacitance. C(Dxxxx) is the same as
EV(Cj.Dxxxx).

Req Effective resistance. R(Dxxxx) is the same as
R(Yj.Dxxxx).

REgion Region code. A numeric code that represents
the region it is operating in. +1 = forward, -1 =
reversed, 0 = unknown.

All parameters of the internal elements Yj and Cj
are available. To access them, concatenate the labels
for the internal element with the diode, separated by

42 CHAPTER 3. CIRCUIT DESCRIPTION

a dot. Yj.D6 is the admittance (Yj) element of the
diode D6.

In this release, there are no probes available in AC
analysis except for the internal elements.

3.3 E: Voltage Controlled Volt-
age Source

3.3.1 Syntax

Exxxxxxx n+ n– nc+ nc– value

3.3.2 Purpose

Voltage controlled voltage source, or voltage gain
block.

3.3.3 Comments

N+ and n– are the positive and negative element
(output) nodes, respectively. Nc+ and nc– are the
positive and negative controlling nodes, respectively.
Value is the voltage gain.

3.4 F: Current Controlled Cur-
rent Source

3.4.1 Syntax

Fxxxxxxx n+ n– ce value

3.4.2 Purpose

Current controlled current source, or current gain
block.

3.4.3 Comments

N+ and n– are the positive and negative element
(output) nodes, respectively. Current flow is from
the positive node, through the source, to the neg-
ative node. Ce is the name of an element through
which the controlling current flows. The direction of
positive controlling current is from the positive node,
through the element, to the negative node of ce. Val-
ue is the transconductance in mhos.

The controlling element can be any simple two ter-
minal element. Unlike SPICE, it does not need to be
a voltage source.

3.5 G: Voltage Controlled Cur-
rent Source

3.5.1 Syntax

Gxxxxxxx n+ n– nc+ nc– value

3.5.2 Purpose

Voltage controlled current source, or transconduc-
tance block.

3.5.3 Comments

N+ and n– are the positive and negative element
(output) nodes, respectively. Current flow is from
the positive node, through the source, to the nega-
tive node. Nc+ and nc– are the positive and negative
controlling nodes, respectively. Value is the transcon-
ductance in mhos.

3.6 H: Current Controlled Volt-
age Source

3.6.1 Syntax

Hxxxxxxx n+ n– ce value

3.6.2 Purpose

Current controlled voltage source, or transresistance
block.

3.6.3 Comments

N+ and n– are the positive and negative element
(output) nodes, respectively. Ce is the name of an
element through which the controlling current flows.
The direction of positive controlling current is from
the positive node, through the element, to the nega-
tive node of ce. Value is the transresistance in Ohms.

3.9. K: COUPLED (MUTUAL) INDUCTORS 43

The controlling element can be any simple two ter-
minal element. Unlike SPICE, it does not need to be
a voltage source.

3.7 I: Independent Current
Source

3.7.1 Syntax

Ixxxxxxx n+ n– value
Ixxxxxxx n+ n– expression

3.7.2 Purpose

Independent current source.

3.7.3 Comments

N+ and n– are the positive and negative element n-
odes, respectively. Positive current flow is from the
positive node, through the source, to the negative n-
ode. Value is the current in Amperes.

All of the SPICE time dependent functions (pulse,
sin, exp, pwl, and sffm are supported. An additional
function generator emulates a laboratory type func-
tion generator, for a more convenient signal input to
the circuit.

3.8 J: Junction Field-Effect
Transistor

3.8.1 Syntax

Jxxxxxxx nd ng ns mname {area} {args}

3.8.2 Purpose

Junction Field Effect Transistor.

3.8.3 Comments

Not implemented. Plans are to implement it as in
SPICE.

3.9 K: Coupled (Mutual) Induc-
tors

3.9.1 Syntax

Kxxxxxxx Lyyyyyyy Lzzzzzzz value

3.9.2 Purpose

Coupled mutual inductance.

3.9.3 Comments

K couples two inductors. The value is the coefficient
of coupling. Using the dot convention, place a dot on
the first node of each inductor.

The coefficient of coupling is given by K = Mij√
LiLj

.

3.9.4 Bugs

This release does not support multiple coupled induc-
tors.

3.10 L: Inductor

3.10.1 Syntax

Lxxxxxxx n+ n– value
Lxxxxxxx n+ n– value {METHOD=method}
{II=initial-current}

3.10.2 Purpose

Inductor, or general flux storage element.

3.10.3 Comments

N+ and n– are the positive and negative element n-
odes, respectively. Value is the inductance in Henries.

Specifying a METHOD overrides the default method
from the options command. The valid methods are
the same.

The (optional) initial condition is the initial (time
= 0) value of the inductor current (in Amperes). Note
that the initial conditions (if any) apply only if the
UIC option is specified on the transient command.

44 CHAPTER 3. CIRCUIT DESCRIPTION

3.11 M: MOSFET

3.11.1 Syntax

Mxxxxxxx nd ng ns nb mname {args}
Mxxxxxxx nd ng ns nb mname {width/length}
{args}

3.11.2 Purpose

MOSFET.

3.11.3 Comments

Nd, ng, ns, and nb are the drain, gate, source, and
bulk (substrate) nodes, respectively. Mname is the
model name.

Length and width are the drawn channel length and
width, in microns. Note that the notation W/L has
units of microns, but the same parameters, in the
argument list (W and L) have units of meters. All
other dimensions are in meters.

The options rstray and norstray determines
whether or not series resistances are included. Ex-
perience has shown that the effect of series resistance
is usually not significant, it can significantly degrade
the simulation time, and it often increases roundoff
errors. Therefore, norstray is the default. Norstray
is the equivalent of setting the model parameters rd,
rs, and rsh all to zero.

Entering a parameter value of 0 is not the same
as not specifying it. This behavior is not compatible
with SPICE. In SPICE, a value of 0 is often interpret-
ed as not specified, with the result being to calculate
it some other way. If you want it to be calculated,
don’t specify it.

Another subtle difference from SPICE is that ACS
may omit some unnecessary parts of the model, which
may affect some reported values. It should not affect
any voltages or currents. For example, if the gate and
drain are tied, Cgs will be omitted from the model, so
the printed value for Cgdovl and Cgd will be 0, which
will disagree with SPICE. It doesn’t matter because
a shorted capacitor can store no charge.

Levels 1, 2, 3, and 6 are implemented.

3.11.4 Element Parameters

Basic Spice compatible parameters

L = x Drawn channel length. (Default = DEFL pa-
rameter from options. DEFL default = 100µ)

W = x Drawn channel width. (Default = DEFW pa-
rameter from options. DEFW default = 100µ)

AD = x Area of drain diffusion. (Default = DEFAD
parameter from options. DEFAD default = 0)

AS = x Area of source diffusion. (Default = DEFAS
parameter from options. DEFAS default = 0)

PD = x Perimeter of drain junction. (Default = 0.)

PS = x Perimeter of source junction. (Default = 0.)

NRD = x Number of squares of drain diffusion. (De-
fault = 1.)

NRS = x Number of squares of source diffusion. (De-
fault = 1.)

Extended parameters (not in Spice)

STIFF Use a stiffly stable integration method and ig-
nore truncation error.

3.11.5 Model Parameters

Basic selection – required for all models

LEVEL = x Model index. (Default = 1) Selects which
of several models to use. The choices supported
are 1, 2, 3, and 6, corresponding to Spice 3f.

Substrate coupling – all models

IS = x Bulk junction saturation current. If not in-
put, it is calculated from JS. If both are input, a
warning is issued, and the calculated value (from
JS) is used, if AD and AS are also input. If neither
IS or JS is input, a default value of 1e-14 is used.

JS = x Bulk junction saturation current per sq-
meter of junction area. May be used to calculate
IS. If a conflict exists, a warning is issued.

FC = x Coefficient for forward bias depletion capac-
itance formula. (Default = 0.5)

3.11. M: MOSFET 45

PB = x Bulk junction potential. (Default = 0.8)

CJ = x Zero bias bulk junction bottom capacitance
per sq-meter of junction area. If not input, but
NSUB is, it is calculated, otherwise a default value
of 0 is used.

MJ = x Bulk junction bottom grading coefficient.
(Default = 0.5)

CJSW = x Zero bias bulk junction sidewall capaci-
tance per meter of junction perimeter. (Default
= 0.)

MJSW = x Bulk junction sidewall grading coefficient.
(Default = 0.33)

Strays – all models

RSH = x Drain and source diffusion sheet resistance.
If not input, use RS and RD directly. If a conflict
exists, a warning is issued. The resistance is only
used if the option rstray is set.

RD = x Drain ohmic resistance (unscaled). If RS is
input, the default value of RD is 0. If RD and
RS are both not input, and RSH is input, they
are calculated from RSH. If any conflict exists,
a warning is issued, indicating the action taken,
which is believed to be compatible with SPICE.
The resistance is only used if the option rstray
is set.

RS = x Source ohmic resistance (unscaled). If RD is
input, the default value of RS is 0. If RD and
RS are both not input, and RSH is input, they
are calculated from RSH. If any conflict exists,
a warning is issued, indicating the action taken,
which is believed to be compatible with SPICE.
The resistance is only used if the option rstray
is set.

CBD = x Zero bias B-D junction capacitance (un-
scaled). If CBD is not specified, it is calculated
from CJ.

CBS = x Zero bias B-S junction capacitance (un-
scaled). If CBS is not specified, it is calculated
from CJ.

CGSO = x Gate-source overlap capacitance, per
channel width. (Default = 0.)

CGDO = x Gate-drain overlap capacitance, per chan-
nel width. (Default = 0.)

CGBO = x Gate-bulk overlap capacitance, per chan-
nel length. (Default = 0.)

Accepted and ignored – all models

KF = x Flicker noise coefficient. SPICE parameter
accepted but not implemented.

AF = x Flicker noise exponent. SPICE parameter
accepted but not implemented.

STIFF Use a stiffly stable integration method and ig-
nore truncation error.

Level 1,2,3,6 shared parameters

VTO = x Zero bias threshold voltage. If not input,
but NSUB is, it is calculated, otherwise a default
value of 0 is used.

KP = x Transconductance parameter. If not input,
it is calculated by UO * COX.

GAMMA = x Bulk threshold parameter. If not input,
but NSUB is, it is calculated, otherwise a default
value of 0 is used.

PHI = x Surface potential. If not input, but NSUB is,
it is calculated, otherwise a default value of 0.6 is
used. A warning is issued if the calculated value
is less than 0.1, in which case 0.1 is used.

LAMBDA = x Channel length modulation. If not in-
put, it is calculated dynamically during simu-
lation. If the value input is larger than 0.2, a
warning is issued, but no correction is made. (ac-
cepted but ignored for level 3)

TOX = x Oxide thickness. (meters) (Default = 1e-7)

NSUB = x Substrate doping. (atoms / cm3) Used in
calculation of VTO, GAMMA, PHI, and CJ. If not
input, default values are used.

NSS = x Surface state density. (atoms / cm2) (De-
fault = 0.) Used, with NSUB in calculation of
VTO.

46 CHAPTER 3. CIRCUIT DESCRIPTION

XJ = x Metallurgical junction depth. (meters) Used
to calculate short channel effects. If not input,
do not model short channel effects, effectively
defaults to 0.

LD = x Lateral diffusion. (Default = 0.) Effective
channel length is reduced by 2 * LD.

UO = x Surface mobility. (cm2/V-s) (Default =
600.)

DELTA = x Width effect on threshold voltage. (De-
fault = 0.) (Level 2 and 3 only.)

TPG = x Type of gate material. (Default = 1.)

+1 opposite to substrate
–1 same as substrate
0 Aluminum

CMODEL = x Capacitance model selector (Default =
2 for level 1,2,3. Default = 3 for level 6.) The
only valid values are 2 and 3. 2 selects Meyer
capacitance calculations compatible with Spice
2. 3 selects campatibility with Spice 3.

Level 1

The Level 1 model has no additional parameters.

Level 2

NFS = x Fast surface state density. (atoms / cm2)
Used in modeling subthreshold effects. If not
input, do not model subthreshold effects.

VMAX = x Maximum drift velocity of carriers. (m/s)
Used in calculating vdsat, and lambda. If not
input, use a different method. VMAX does not
always work, if the method fails, the alternate
method is used and the warning “Baum’s theory
rejected” is issued if the error threshold is set to
debug or worse.

NEFF = x Total channel charge (fixed and mobile)
coefficient. (Default = 1.) Used in internal cal-
culation of lambda.

UCRIT = x Critical field for mobility degradation.
(V/cm) (Default = 1e4)

UEXP = x Critical field exponent in mobility degra-
dation. If not input, do not model mobility
degradation, effectively defaulting to 0.

UTRA = x Transverse field coefficient. SPICE pa-
rameter accepted but not implemented. It is also
not implemented in most versions of SPICE.

Level 3

NFS = x Fast surface state density. (atoms / cm2)
Same as Level 2.

VMAX = x Maximum drift velocity of carriers. (m/s)
Used in calculating vdsat. If not input, use a
different method.

THETA = x Mobility modulation.

ETA = x Static feedback.

KAPPA = x Saturation field vector.

Level 6

KV = x Saturation voltage factor.

NV = x Saturation voltage coeff.

KC = x Saturation current factor.

NC = x Saturation current coeff.

NVTH = x Threshold voltage coeff.

PS = x Sat. current modification par.

GAMMA1 = x Bulk threshold parameter 1.

SIGMA = x Static feedback effect par.

LAMBDA1 = x Channel length modulation param. 1.

3.11.6 Probes

VDS Drain-source voltage.

VGS Gate-source voltage.

VBS Bulk-source voltage.

VGD Gate-drain voltage.

VBD Bulk-drain voltage.

3.11. M: MOSFET 47

VSD Source-drain voltage.

VDG Drain-gate voltage.

VBG Bulk-gate voltage.

VSG Source-gate voltage.

VDB Drain-bulk voltage.

VGB Gate-bulk voltage.

VSB Source-bulk voltage.

VD Drain-ground voltage.

VG Gate-ground voltage.

VB Bulk-ground voltage.

VS Source-ground voltage.

Id Drain current.

IS Source current.

IG Gate current.

IB Bulk current.

CGSO Gate-source overlap capacitance.

CGDO Gate-drain overlap capacitance.

CGBO Gate-bulk overlap capacitance.

CGSm Gate-source Meyer capacitance.

CGDm Gate-drain Meyer capacitance.

CGBm Gate-bulk Meyer capacitance.

CGST Gate-source total capacitance.

CGDT Gate-drain total capacitance.

CGBT Gate-bulk total capacitance.

CBD Bulk-drain junction capacitance.

CBS Bulk-source junction capacitance.

CGATE Nominal gate capacitance.

GM Transconductance.

GDS Drain-source conductance.

GMB Body effect transconductance.

VDSAT Saturation voltage.

VTH Threshold voltage.

IDS Drain-source current, not including strays.

IDSTray Drain current due to strays.

IError Estimated drain current error bound.

P Power dissipation.

P Power.

PD Power dissipated. The power dissipated as heat.
It is always positive and does not include power
sourced. It should be the same as P because the
mosfet cannot generate energy.

PS Power sourced. The power sourced by the part. It
is always positive and does not consider its own
dissipation. It should be 0 because the mosfet
cannot generate energy.

REgion Region code. A numeric code that represents
the region it is operating in. The number is the
sum of several factors. A negative code indicates
the source and drain are reversed.

1 Active. (Not cut off.)

2 Not subthreshold.

4 Saturated.

10 Source to bulk is forward biased.

20 Drain to bulk is forward biased.

40 Punch through.

All parameters of the internal elements (Ids, Gmr,
Gmf, Yds, Gmbr, Gmbf, Cgb, Cgd, Cgs, Dsb, Ddb,
Rd, Rs) are available. To access them, concatenate
the labels for the internal element with the diode,
separated by a dot. Cgd.M6 is the gate to drain ca-
pacitance of M6.

In this release, there are no probes available in AC
analysis except for the internal elements.

48 CHAPTER 3. CIRCUIT DESCRIPTION

3.12 Q: Bipolar Junction Tran-
sistor

3.12.1 Syntax

Qxxxxxxx nc nb ne mname {area} {args}

3.12.2 Purpose

Bipolar junction transistor,

3.12.3 Comments

Not implemented. Plans are to implement it as in
SPICE.

3.13 R: Resistor

3.13.1 Syntax

Rxxxxxxx n+ n– value
Rxxxxxxx n+ n– expression

3.13.2 Purpose

Resistor, or general current controlled dissipative el-
ement.

3.13.3 Comments

N+ and n– are the positive and negative element n-
odes, respectively. Value is the resistance in Ohms.

The resistor (type R) differs from the admittance
(type Y) in that the resistor is a current controlled
element, and the conductance is a voltage controlled
element, in addition to the obvious use of conduc-
tance (1/R) instead of resistance.

3.14 S: Voltage Controlled
Switch

3.14.1 Syntax

Sxxxxxxx n+ n– nc+ nc– mname {ic}

3.14.2 Purpose

Voltage controlled switch.

3.14.3 Comments

N+ and n– are the positive and negative element n-
odes, respectively. Nc+ and nc– are the controlling
nodes. Mname is the model name. A switch is a re-
sistor between n+ and n–. The value of the resistor
is determined by the state of the switch.

The resistance between n+ and n– will be RON
when the controlling voltage (between nc+ and nc–
) is above VT + VH. The resistance will be ROFF
when the controlling voltage is below VT - VH. When
the controlling voltage is between VT - VH and VT
+ VH, the resistance will retain its prior value.

You may specify ON or OFF to indicate the initial
state of the switch when the controlling voltage is in
the hysteresis region.
RON and ROFF must have finite positive values.

3.14.4 Model Parameters

VT = x Threshold voltage. (Default = 0.)

VH = x Hysteresis voltage. (Default = 0.)

RON = x On resistance. (Default = 1.)

ROFF = x Off resistance. (Default = 1e12)

3.15 T: Transmission Line

3.15.1 Syntax

Txxxxxxx n1+ n1– n2+ n2– {args}

3.15.2 Purpose

Lossless transmission line.

3.15.3 Comments

N1+ and n1– are the nodes at one end. N2+ and n2–
are the nodes at the other end.

The parameters TD, Freq, and NL determine the
length of the line. Either TD or Freq and NL must
be specified. If only Freq is specified, NL is assumed
to be .25. The other will be calculated based on the
one you specify. If you specify too much, Freq and
NL dominate, and a warning is issued.

3.16. U: LOGIC DEVICE 49

3.15.4 Element Parameters

Z0 = x Characteristic impedance. (Default = 50.)

TD = x Time delay.

Freq = x Frequency for NL.

NL = x Number of wavelengths at Freq.

3.16 U: Logic Device

3.16.1 Syntax

Uxxxxxxx out gnd vdd enable in1 in2 ... fam-
ily gatetype

3.16.2 Purpose

Logic element for mixed or logic mode simulation.

3.16.3 Comments

A sample 2 input nand gate might be: U102 5 0 34
34 2 3 cmos nand. The input pins are connected to
nodes 2 and 3. The output is at node 5. Node 34 is
the power supply.

The logic element behaves differently depending on
the options analog, mixed, or digital. You set one
of these with the options command. Analog mode
substitutes a subcircuit for the gate for full analog
simulation. Digital mode simulates the gate as a
digital device as in an event driven gate level logic
simulator. Mixed mode applies heuristics to decide
whether to use analog or digital for each gate.

In analog mode the logic (U) device is almost the
same as a subcircuit (X). The subcircuit is user de-
fined for each gate type used. A .subckt defines the
analog equivalent of a logic element. The name of
the subcircuit is made by concatenating the family,
gatetype, and the number of inputs. For example, if
the family is cmos and the gatetype is nand and it has
two inputs, the name of the subcircuit is cmosnand2.
So, the gate in the first paragraph becomes equivalent
to: X 5 0 34 34 2 3 cmosnand2. You then need to
define the subcircuit using the standard .subckt no-
tation. You can probe the internal elements the same
as an ordinary subcircuit.

The digital mode uses simple boolean expressions
to compute the output, just like a gate level logic sim-
ulator. In this case the output is computed by L(5)
= not(L(2) and L(3)) where L(2) is the logic state
at node 2. The simulator exploits latency so it will
only compute the output if one of the inputs changes.
The output actually changes after a delay, specified
in the .model statement. There are no conversions
between digital and analog where gates connect to-
gether. There will be an automatic conversion from
analog to digital for any input that is driven by an
analog device. There will be an automatic conversion
from digital to analog for any output that drives an
analog device. These conversions will only be done if
they are needed. You can probe the analog value at
any node. The probe will automatically request the
conversion if it needs it. There is no internal subcir-
cuit so it is an error to probe the internal elements.

The mixed mode is a combination of analog and
digital modes on a gate by gate basis. Some gates
will be analog. Some will be digital. This will change
as the simulation runs based on the quality of the
signals. You need to specify a .subckt as you do
for the analog mode, but the simulator may not use
it. You can usually not probe the elements inside the
sibcircuit because they come and go.

3.16.4 Element Parameters

Family refers to the logic family .model statement.
Gatetype is the type of logic gate:

AND

NAND

OR

NOR

XOR

INV

3.16.5 Model Parameters

Parameters used in digital mode

DElay = x Propagation delay. (Seconds) (Default
= 1e-9) The propagation delay of a simple gate
when simulated in logic mode.

50 CHAPTER 3. CIRCUIT DESCRIPTION

Parameters used in conversion both ways

VMAx = x Nominal logic 1. (Volts) (Default = 5.)
The nominal value for a logic 1.

VMIn = x Nominal logic 0. (Volts) (Default = 0.)
The nominal value for a logic 0.

Unknown = x Nominal logic unknown. (Volts) (De-
fault = (vmax+vmin)/2) The output voltage for
a logic unknown. In a real circuit, this voltage
is unknown, but a simulator needs something, so
here it is.

Digital to Analog conversion

RIse = x Rise time. (Seconds) (Default = delay / 2)
The nominal rise time of a logic signal. This will
be the rise time when a logic signal is converted
to analog.

FAll = x Fall time. (Seconds) (Default = delay / 2)
The nominal fall time of a logic signal. This will
be the fall time when a logic signal is converted
to analog.

RS = x Series resistance, strong. (Ohms) (Default
= 100.) The resistance in series with the output
when a logic gate drives analog circuitry.

RW = x Series resistance, weak. (Ohms) (Default =
1e9) The output resistance in a high impedance
state.

Analog to Digital conversion

THH = x Threshold high. (Unitless) (Default = .75)
The threshold for the input to cross from tran-
sition to high expressed as a fraction of the dif-
ference between high and low values. (Low = 0.
High = 1.)

THL = x Threshold low. (Unitless) (Default = .25)
The threshold for the input to cross from tran-
sition to low expressed as a fraction of the dif-
ference between high and low values. (Low = 0.
High = 1.)

Mode decision parameters

MR = x Margin rising. (Unitless) (Default = 5) How
much worse than nominal the analog input rise
time can be and still be accepted as clean enough
for logic simulation.

MF = x Margin falling. (Unitless) (Default = 5) How
much worse than nominal the analog input fall
time can be and still be accepted as clean enough
for logic simulation.

OVer = x Overshoot limit. (Unitless) (Default = .1)
How much overshoot can a signal have and still
be accepted as clean enough for logic simulation,
expressed as a fraction of the difference between
high and low values. (Low = 0. High = 1.)

3.16.6 Probes

V Output voltage.

In this release, there are no probes available in AC
analysis except for the internal elements. Internal el-
ements in the analog model are available, but they
come and go so they may be unreliable. More pa-
rameters will be added.

You can probe the logic value at any node. See the
print command for details.

3.17 V: Independent Voltage
Source

3.17.1 Syntax

Vxxxxxxx n+ n– value
Vxxxxxxx n+ n– expression

3.17.2 Purpose

Independent voltage source.

3.17.3 Comments

N+ and n– are the positive and negative element n-
odes, respectively. Value is the voltage in Volts.

All of the SPICE time dependent functions (pulse,
sin, exp, pwl, and sffm are supported. An additional

3.19. X: SUBCIRCUIT CALL 51

function generator emulates a laboratory type func-
tion generator, for a more convenient signal input to
the circuit.

3.18 W: Current Controlled
Switch

3.18.1 Syntax

Wxxxxxxx n+ n– ce mname {ic}

3.18.2 Purpose

Current controlled switch.

3.18.3 Comments

N+ and n– are the positive and negative element
nodes, respectively. Ce is the name of an element
through which the controlling current flows. Mname
is the model name. A switch is a resistor between n+
and n–. The value of the resistor is determined by
the state of the switch.

The resistance between n+ and n– will be RON
when the controlling current (through ce) is above IT
+ IH. The resistance will be ROFF when the control-
ling current is below IT - IH. When the controlling
current is between IT - IH and IT + IH, the resistance
will retain its prior value.

You may specify ON or OFF to indicate the initial
state of the switch when the controlling current is in
the hysteresis region.
RON and ROFF must have finite positive values.
The controlling element can be any simple two ter-

minal element. Unlike SPICE, it does not need to be
a voltage source.

3.18.4 Model Parameters

IT = x Threshold current. (Default = 0.)

IH = x Hysteresis current. (Default = 0.)

RON = x On resistance. (Default = 1.)

ROFF = x Off resistance. (Default = 1e12)

3.19 X: Subcircuit Call

3.19.1 Syntax

Xxxxxxxx n1 {n2 n3 ...} subname

3.19.2 Purpose

Subcircuit call

3.19.3 Comments

Subcircuits are used by specifying pseudo-elements
beginning with X, followed by the connection nodes.

3.19.4 Probes

Vx Port (terminal node) voltage. x is which port to
probe. 1 is the first node in the ”X” statement,
2 is the second, and so on.

P Power. The sum of the power probes for all the
internal elements.

PD Power dissipated. The total power dissipated as
heat.

PS Power sourced. The total power generated.

In this release, there are no probes available in AC
analysis except for the internal elements. More pa-
rameters will be added. Internal elements can be
probed by concatenating the internal part label with
the subcircuit label. R5.X7 is R5 inside X7.

3.20 Y: Admittance

3.20.1 Syntax

Yxxxxxxx n+ n– value
Yxxxxxxx n+ n– expression

3.20.2 Purpose

Admittance, or general voltage controlled dissipative
element.

52 CHAPTER 3. CIRCUIT DESCRIPTION

3.20.3 Comments

N+ and n– are the positive and negative element n-
odes, respectively. Value is the admittance in Mhos.

The resistor (type R) differs from the admittance
(type Y) in that the resistor is a current controlled
element, and the conductance is a voltage controlled
element, in addition to the obvious use of conduc-
tance (1/R) instead of resistance.

Chapter 4

Behavioral modeling

ACS behavioral modeling is in a state of transition,
so this is subject to change in a future release.

Basically, all simple components can have a be-
havioral description, with syntax designed as an ex-
tension of the Spice time dependent sources. They
are not necessarily physically realizeable. Some only
work on particular types of analysis, or over a small
range of values. Some can be used together, some
cannot.

In general, all somple components are considered to
have simple transformations. A function returns one
parameter as a function of one other, as an extension
of their linear behavior.

Linear behavior:

Capacitor q = Cv

Inductor φ = Li

Resistor v = Ir

Admittance i = Y v

VCVS vo = Evi

VCCS io = Gvi

CCVS vo = Eii

CCCS io = Gii

Sources are defined as functions of time:

Voltage source v = f(t)

Current source i = f(t)

For behavioral modeling / nonlinear values, replace
the constant times input by an arbitrary function:

Capacitor q = f(v)

Inductor φ = f(i)

Resistor v = f(r)

Admittance i = f(v)

VCVS vo = f(vi)

VCCS io = f(vi)

CCVS vo = f(ii)

CCCS io = f(ii)

Conditionals

AC AC analysis only.

DC DC/OP/Transient/Fourier analysis only

DCOP DC/OP analysis only.

DCONLY DC analysis only.

DCTRAN DC/OP/Transient/Fourier analysis only
(same as DC)

OP OP analysis only.

TRAN Transient analysis only.

ELSE Anything not listed.

53

54 CHAPTER 4. BEHAVIORAL MODELING

Functions

COMPLEX Complex (re, im) value.

EXP Spice Exp source. (time dependent value).

GENERATOR Value from Generator command.

POLY Polynomial (Spice style).

POSY Posynomial (Like poly, non-integer powers).

PULSE Spice Pulse source. (time dependent value).

PWL Piece-wise linear.

SFFM Spice Frequency Modulation (time dependent
value).

SIN Spice Sin source. (time dependent value).

TANH Hyperbolic tangent xfer function.

4.1 Conditionals

ACS behavioral modeling conditionals are an exten-
sion of the “AC” and “DC” Spice source parameters.

The extensions ...

1. There are more choices, including an “else”.

2. They apply to all elements (primitive compo-
nents).

3. Each section can contain functions and options.

They are interpreted as an if, else-if, else statement.
The first condition that is true applies.

The following are available:

AC AC analysis only.

DC DC/OP/Transient/Fourier analysis only

DCOP DC/OP analysis only.

DCONLY DC analysis only.

DCTRAN DC/OP/Transient/Fourier analysis only
(same as DC)

OP OP analysis only.

TRAN Transient/Fourier analysis only.

ELSE Anything not listed.

4.1.1 Examples

V12 1 0 AC 1 DC 3 This voltage source has a value
of 1 for AC analysis, 3 for DC, OP, Transient,
and Fourier analysis.

R44 2 3 OP 1 ELSE 1g This resistor has a value of
1 ohm for the “OP” analysis, 1 gig-ohm for any-
thing else. This might be useful as the feedback
resistor on an op-amp. Set it to 1 ohm to set the
operating point, then 1 gig to measure its open
loop characteristics, hiding the fact that the op-
amp would probably saturate if it was really left
open loop.

4.2 Functions

ACS behavioral modeling functions are an extension
of the Spice source time dependent values.

4.2.1 The extensions

They apply to all elements (primitive components).
All accept either Spice compatible order dependent

parameters, or easier keyword=value notation.
Some of the Hspice nonlinear functions are provid-

ed.
The syntax is identical for all supported compo-

nents. This might force it to be a little different from
Hspice, even where functionality is the same.

4.2.2 Fixed sources

Time dependent functions are voltage or current as a
function of time. They are mostly Spice compatible,
with extensions.

Nonlinear transfer functions use time as the inde-
pendent variable. Some may not make sense, but
they are there anyway.

4.2.3 Capacitors and inductors

Time dependent functions are capacitance or induc-
tance as a function of time. They are voltage/current
conserving, not charge/flux conserving.

Nonlinear transfer functions are charge or flux as
a function of input (voltage or current). THIS IS

4.2. FUNCTIONS 55

NOT COMPATIBLE WITH HSPICE. ACS will ac-
cept the HSPICE syntax, but it is interpreted dif-
ferent. Charge and flux are conserved, and can be
probed.

4.2.4 Resistors and conductances

Time dependent functions are resistance or conduc-
tance as a function of time.

Nonlinear transfer functions are current or voltage
as a function of input (voltage or current). Resistors
define voltage as a function of current. Conductances
define current as a function of voltage.

4.2.5 Controlled sources

Time dependent functions are gain (v/v, transcon-
ductance, etc) function of time.

Nonlinear transfer functions are output (voltage or
current) as a function of input (voltage or current).

4.2.6 Available functions

COMPLEX Complex (re, im) value.

EXP Spice Exp source. (time dependent value).

GENERATOR Value from Generator command.

POLY Polynomial (Spice style).

POSY Posynomial (Like poly, non-integer powers).

PULSE Spice Pulse source. (time dependent value).

PWL Piece-wise linear.

SFFM Spice Frequency Modulation (time dependent
value).

SIN Spice Sin source. (time dependent value).

TANH Hyperbolic tangent transfer function.

4.2.7 Parameters that apply to al-
l functions

These parameters are available with all functions.
Some may not make sense in some cases, but they
are available anyway.

Bandwidth = x AC analysis bandwidth. (Default =
infinity.) The transfer function is frequency de-
pendent, with a 3 DB point at this frequency.
There is frequency dependent phase shift ranging
from 0 degrees at low frequencies to 90 degrees
at high frequencies. The phase shift is 45 de-
grees at the specified frequency. AC ANALYSIS
ONLY.

Delay = x AC analysis delay. (Default = 0.) The
signal is delayed by x seconds, effectively by a
frequency dependent phase shift. AC ANALY-
SIS ONLY.

Phase = x AC analysis phase. (Default = 0.) A
fixed phase shift is applied. This is primarily
intended for sources, but applies to all elements.
AC ANALYSIS ONLY.

IOffset = x Input offset. (Default = 0.) A DC
offset is added to the “input” of the element,
before evaluating the function.

OOffset = x Output offset. (Default = 0.) A DC
offset is added to the “output” of the element,
after evaluating the function.

Scale = x Transfer function scale factor. (Default
= 1.) The transfer function is multiplied by a
constant.

TNOM = x Nominal temperature. (Default = .option
TNOM) The nominal values apply at this tem-
perature.

TC1 = x First order temperature coefficient. (De-
fault = 0.)

TC2 = x Second order temperature coefficient. (De-
fault = 0.)

IC = x Initial condition. An initial value, to force at
time=0. The actual parameter applied depends
on the component. (Capacitor voltage, inductor
current. All others ignore it.) You must use the
“UIC” option for it to be used.

Temperature adjustments and scaling use the fol-
lowing formula:

value *= _scale * (1 + _tc1*tempdiff
+ _tc2*tempdiff*tempdiff)

where tempdiff is t - tnom.

56 CHAPTER 4. BEHAVIORAL MODELING

4.3 COMPLEX: Complex value

4.3.1 Syntax

COMPLEX realpart imaginarypart options

4.3.2 Purpose

Complex component value, using a real and imagi-
nary part. AC only.

4.3.3 Comments

Strictly, this adds no functionality over the polar op-
tion on any function, except notational convenience.

4.3.4 Example

V12 2 0 complex 1,2 A voltage source with a value
of 1 + j2 volts.

4.4 EXP: Exponential time de-
pendent value

4.4.1 Syntax

EXP args
EXP iv pv td1 tau1 td2 tau2 period

4.4.2 Purpose

The component value is an exponential function of
time.

4.4.3 Comments

For voltage and current sources, this is the same as
the Spice EXP function, with some extensions.

The shape of the waveform is described by the fol-
lowing algorithm:

ev = _iv;
for (reltime=time; reltime>=0; reltime-=_period){

if (reltime > _td1){
ev += (_pv - _iv)

* (1. - Exp(-(reltime-_td1)/_tau1));
}
if (reltime > _td2){

ev += (_iv - _pv)

* (1. - Exp(-(reltime-_td2)/_tau2));
}

}

4.4.4 Parameters

IV = x Initial value. (required)

PV = x Pulsed value. (required)

TD1 = x Rise time delay. (Default = 0.)

TAU1 = x Rise time constant. (Default = 0.)

TD2 = x Fall time delay. (Default = 0.)

TAU2 = x Fall time constant. (Default = 0.)

Period = x Repeat period. (Default = infinity.)

4.5 GENERATOR: Signal Genera-
tor time dependent value

4.5.1 Syntax

GENERATOR scale

4.5.2 Purpose

The component “value” is dependent on a “signal
generator”, manipulated by the “generator” com-
mand.

4.5.3 Comments

For transient analysis, the “value” is determined by
a signal generator, which is considered to be external
to the circuit and part of the test bench. See the
“generator” command for more information.

For AC analysis, the value here is the amplitude.
Strictly, all of the functionality and more is avail-

able through the Spice-like behavioral modeling func-
tions, but this one provides a user interface closer to
the function generator that an analog designer would
use on a real bench. It is mainly used for interactive
operation.

It also provides backward compatibility with pre-
decessors to ACS, which used a different netlist for-
mat.

4.7. POSY: POLYNOMIAL WITH NON-INTEGER POWERS 57

4.6 POLY: Polynomial nonlinear
transfer function

4.6.1 Syntax

POLY c0 c1 c2 c3 ...
POLY c0 c1 c2 c3 ... args

4.6.2 Purpose

Defines a transfer function by a one dimensional poly-
nomial.

4.6.3 Comments

This is similar to, but not exactly the same as, the
HSPICE POLY(1).

For capacitors, this function defines charge as a
function of voltage. For inductors, it defines flux as
a function of current. This is not compatible with
HSPICE. If you have the coefficients defining capaci-
tance or inductance, prepending a “0” to the list will
turn it into the correct form for ACS.

For controlled sources, it is compatible with H-
SPICE.

For fixed sources, it defines voltage or current as a
polynomial function of time.

The transfer function is defined by:

out = c0 + (c1*in) + (c2*in^2) +

4.6.4 Parameters

MIN = x Minimum output value (clipping). (Default
= -infinity.)

MAX = x Maximum output value (clipping). (De-
fault = infinity)

ABS Absolute value, truth value. (Default = false).
If set to true, the result will be always positive.

4.7 POSY: Polynomial with non-
integer powers

4.7.1 Syntax

POSY c1,p1 c2,p2 ...
POSY c1,p1 c2,p2 ... args

4.7.2 Purpose

Defines a transfer function by a one dimensional
“posynomial”, like a polynomial, except that the
powers are arbitrary, and usually non-integer.

4.7.3 Comments

There is no corresponding capability in any SPICE
that I know of.

For capacitors, this function defines charge as a
function of voltage. For inductors, it defines flux as
a function of current.

For fixed sources, it defines voltage or current as a
function of time.

Normal use of this function required positive input
(voltage or current). The result is zero if the input is
negative. Raising a negative number to a non-integer
power would produce a complex result, which implies
a non-causal result, which cannot be represented in a
traditional transient analysis.

The transfer function is defined by:

if (in > 0){
out = (c1*in^p1) + (c2*in^p2) +

}else{
out = 0.

}

4.7.4 Parameters

MIN = x Minimum output value (clipping). (Default
= -infinity.)

MAX = x Maximum output value (clipping). (De-
fault = infinity)

ABS Absolute value, truth value. (Default = false).
If set to true, the result will be always positive.

4.7.5 Example

E1 2 0 1 0 posy 1 .5 The output of E1 is the
square root of its input.

58 CHAPTER 4. BEHAVIORAL MODELING

4.8 PULSE: Pulsed time depen-
dent value

4.8.1 Syntax

PULSE args
PULSE iv pv delay rise fall width period

4.8.2 Purpose

The component value is a pulsed function of time.

4.8.3 Comments

For voltage and current sources, this is the same as
the Spice PULSE function, with some extensions.

The shape of a single pulse is described by the fol-
lowing algorithm:

if (time > _delay+_rise+_width+_fall){
// past pulse
ev = _iv;

}else if (time > _delay+_rise+_width){
// falling
interp=(time-(_delay+_rise+_width))/_fall;
ev = _pv + interp * (_iv - _pv);

}else if (time > _delay+_rise){
// pulsed value
ev = _pv;

}else if (time > _delay){
// rising
interp = (time - _delay) / _rise;
ev = _iv + interp * (_pv - _iv);

}else{
// initial value
ev = _iv;

}

4.8.4 Parameters

IV = x Initial value. (required)

PV = x Pulsed value. (required)

DELAY = x Rise time delay, seconds. (Default = 0.)

RISE = x Rise time, seconds. (Default = 0.)

FALL = x Fall time, seconds. (Default = 0.)

WIDTH = x Pulse width, seconds. (Default = 0.)

PERIOD = x Repeat period, seconds. (Default = in-
finity.)

4.9 PWL: Piecewise linear func-
tion

4.9.1 Syntax

PWL x1,y1 x2,y2 ...

4.9.2 Purpose

Defines a piecewise linear transfer function or time
dependent value.

4.9.3 Comments

This is similar to, but not exactly the same as, the
Berkeley SPICE PWL for fixed sources, and the H-
SPICE PWL for controlled sources..

For capacitors, this function defines charge as a
function of voltage. For inductors, it defines flux as
a function of current. This is not compatible with
HSPICE.

For fixed sources, it defines voltage or current as a
function of time.

The values of x must be in increasing order.
Outside the specified range, the behavior depends

on the type of element. For fixed sources, the output
(voltage or current) is constant at the end value. This
is compatible with SPICE. For other types, the last
segment is extended linearly. If you want it to flatten,
specify an extra point so the slope of the last segment
is flat.

4.9.4 Parameters

There are no additional parameters, beyond those
that apply to all.

4.9.5 Example

C1 2 0 pwl -5,-5u 0,0 1,1u 4,2u 5,2u This
“capacitor” stores 5 microcoulombs at -5 volts
(negative, corresponding to the negative voltage,
as expected. The charge varies linearly to 0 at
0 volts, acting like a 1 microfarad capacitor.
(C = dq/dv). This continues to 1 volt. The

4.11. SIN: SINUSOIDAL TIME DEPENDENT VALUE 59

0,0 point could have been left out. The charge
increases only to 2 microcoulombs at 4 volts,
for an incremental capacitance of 1u/3 or
.3333 microfarads. The same charge at 5 volts
indicates that it saturates at 2 microcoulombs.
For negative voltages, the slope continues.

4.10 SFFM: Frequency Modula-
tion time dependent value

4.10.1 Syntax

SFFM args
SFFM offset amplitude carrier modindex sig-

nal

4.10.2 Purpose

The component value is a sinusoid, frequency modu-
lated by another sinusoid.

4.10.3 Comments

For voltage and current sources, this is the same as
the Spice SFFM function, with some extensions.

The shape of the waveform is described by the fol-
lowing equations:

mod = (_modindex * sin(2*PI*_signal*time));
ev = _offset + _amplitude

* sin(2*PI*_carrier*time + mod);

4.10.4 Parameters

Offset = x Output offset. (Default = 0.)

Amplitude = x Amplitude. (Default = 1.)

Carrier = x Carrier frequency, Hz. (required)

Modindex = x Modulation index. (required)

Signal = x Signal frequency. (required)

4.11 SIN: Sinusoidal time de-
pendent value

4.11.1 Syntax

SIN args
SIN offset amplitude frequency delay damp-

ing

4.11.2 Purpose

The component value is a sinusoidal function of time,
with optional exponential decay.

4.11.3 Comments

For voltage and current sources, this is the same as
the Spice SIN function, with some extensions.

It generates either a steady sinusoid, or a damped
sinusoid.

If delay and damping are both zero, you get a
steady sine wave at the specified frequency. Other-
wise, you get a damped pulsed sine wave, starting
after delay and damping out with a time constant of
1/damping.

The shape of the waveform is described by the fol-
lowing algorithm:

reltime = time - _delay
if (reltime > 0.){

ev = _amplitude * sin(2*PI*_freq*reltime);
if (_damping != 0.){

ev *= exp(-reltime*_damping);
}
ev += _offset;

}else{
ev = _offset;

}

4.11.4 Parameters

Offset = x DC offset. (Default = 0.)

Amplitude = x Peak amplitude. (Default = 1.)

Frequency = x Frequency, Hz. (required)

Delay = x Turn on delay, seconds. (Default = 0.)

Damping = x Damping factor, 1/seconds. (Default
= 0.)

60 CHAPTER 4. BEHAVIORAL MODELING

4.12 TANH: Hyperbolic tangent
transfer function

4.12.1 Syntax

TANH gain limit
TANH args

4.12.2 Purpose

Defines a hyperbolic tangent, or soft limiting, transfer
function.

4.12.3 Comments

There is no corresponding capability in any SPICE
that I know of, but you can get close with POLY.

For capacitors, this function defines charge as a
function of voltage. For inductors, it defines flux as
a function of current.

For fixed sources, it defines voltage or current as a
function of time, which is probably not useful.

This function describes a hyperbolic tangent trans-
fer function similar to what you get with a single stage
push-pull amplifier, or a simple CMOS inverter act-
ing as an amplifier.

4.12.4 Parameters

GAIN = x The small signal gain at 0 bias. (Required)

LIMIT = x Maximum output value (soft clipping).
(Required)

4.12.5 Example

E1 2 0 1 0 tanh gain=-10 limit=2 ioffset=2.5 ooffset=2.5
This gain block has a small signal gain of -10.
The input is centered around 2.5 volts. The
output is also centered at 2.5 volts. It “clips”
softly at 2 volts above and below the output
center, or at .5 volts (2.5 − 2) and 4.5 volts
(2.5 + 2).

Chapter 5

Installation

Most of the development of ACS was done on a
PC running Linux. I have also compiled it successful-
ly on several other systems, listed at the end of this
file. Other users have ported ACS to several other
systems. Some of the files are included in the distri-
bution. They may not have been tested in the latest
release. It should compile with any “standard” C++
compiler. It should produce no warnings when com-
piled with the switches in the supplied makefiles and
g++, except those due to the system supplied header
files being defective. It requires templates, but not
exceptions.

All source files are in the src directory. I use subdi-
rectories for the .o files each supported machine. This
makes it possible to install it on several different ma-
chines all sharing the same file system.

To avoid maintaining multiple versions of Make-
files, I have broken them up to parts that must be
concatenated: Make1.*, Make2.*, Make3.*. In gen-
eral, to make a Makefile for your system, cat one of
each. See the Makefile for details. I have automated
this for some systems. Just “make your-machine”, if
it is one that is supported. In some cases, the Make-
file will compile both a “release” and “debug” version.
In these cases, type “make your-machine-release” or
“make your-machine-debug” depending on which y-
ou want. This will make the appropriate Makefile,
cd to where the .o’s go and run make from there.
For porting information for specific machines, read
its “Make2.*” file.

I assume that make will follow “VPATH” to find
the sources. This system makes it possible to manage
several platforms on a single file system which may
be NFS mounted to all the supported machines. If
your make does not support VPATH, there are three

options. The preferred method on unix based sys-
tems is to cd to where the .o’s go and type “ln -s
../*.cc ../*.h .”. This will set up links so the Make-
files will work as intended. In some cases we have set
up the Makefile to do this automatically. The second
method, which may be needed on systems like MS-
DOS that don’t have symbolic links is to copy the .c
and .h files to satisfy make. The third option, where
you have only one computer, is to move the machine
specific Makefile to the src directory and run make
from there.

If you have g++ on a unix type system that is not
directly supported, try to compile it by just typing
“make”. In most cases this will do it, but you may
get a few warnings. If it doesn’t work, look in the file
md.h for hints. Just plain “make” will build a devel-
opment version with additional debugging enabled.
This results in a significant speed penalty.

Then make the installation version, select the ma-
chine you have from the make file and make that.
The machine specific versions will build in their own
directory, have debugging code disabled, and options
are set for best speed. The general purpose “make
g++” builds a version that is optimized as much as
it can be in the general case.

If you have a cfront-type compiler, called “CC”,
and your system is not directly supported, try it first
by typing “make CC”. Again, you may get a few
warnings but it should work. Look in the file md.h
for hints, if it doesn’t work, or if the warnings look
serious.

Since C++ is an evolving language, there are some
known portability problems:

bool The C++ language includes a type “bool”,
which is not implemented in older compiler-

61

62 CHAPTER 5. INSTALLATION

s. By defining BAD BOOL creates the “bool”
type, which must be done in a roundabout way
because the boolean operators may return int,
which in some cases cannot be assigned to bool.

const C++ uses an abstract notion of constant,
meaning that the external appearance of an ob-
ject declared const must not change, but there
can be internal changes like reference counters.
The keyword “mutable” means that a member
variable can change even if it is declared con-
st. As a work around, ACS uses CONST, which
is either defined to nothing or const. Defining
NO ABSTRACT CONST defines out the CON-
ST, making it work on older compilers. A relat-
ed problem is that the header files supplied with
some compilers do not implement const correct-
ly.

complex The evolving standard shows complex to
be a template class, so instead of having a type
“complex”, there is “complex<double>”, “com-
plex<float>”, and so on. Older compilers have
only “complex”. The compiler should automat-
ically define STD COMPLEX to indicate that
it has the template, so selecting the proper mode
should be automatic.

templates There are three common ways to instan-
tiate templates in common use. Unfortunately,
they are incompatible and none of the methods
are available in all compilers. ACS requires tem-
plates, so will not work with many older compil-
ers.

Link time The entire program is compiled and
linked without templates, resulting in some
unresolved externals. The files defining the
templates are compiled again to fill the
need. This is the preferred way, if you have
it. It is supported by CFRONT deriva-
tives such as the Sun CC compiler. Define
LINK TEMPLATES to force it. This is the
default, unless you are using the GNU com-
piler.

Compile time All parts of templates must be
compiled as if in-line, requiring all code to
be in the .h file, or included by the .h file.
Header files include .cc files. The duplicates

are supposed to be thrown away by the link-
er. This is the only style supported by Bor-
land 3.1 or 4.0. It is supported inefficiently
by the GNU compiler starting at version
2.6. Define COMPILE TEMPLATES (or
ComTemP) to force it.

manual Templates must be instantiated man-
ually. This is the preferred way for the
GNU compiler. It is not supported by
CFRONT or Borland. Define MANU-
AL TEMPLATES to force it.

The second inconsistency with templates, is
what type conversions are allowed. Some
compilers require an exact match. Some
will make trivial conversions, such as int to
const int. If yours has a problem, de-
fine PEDANTIC TEMPLATES (or PedTemP).
Defining PEDANTIC TEMPLATES when it is
not needed may produce duplicates, so it MUST
be one way or the other,

missing files or functions Another cause of a port
to fail is missing header files or missing function
prototypes. Sometimes missing functions can be
a problem. The solution to these problems is
to supply what is missing. The “md *” files ex-
ist for this purpose. You should make a copy
of the appropriate Make2. file, patch it to de-
fine something to identify the system, then patch
the md (whatever).h and md (whatever).cc as
appropriate. You should not use any #ifdef’s
except in these file.

bad header files In some cases, the header files
that come with the system or compiler are de-
fective and generate warnings without anything
wrong with the program being compiled. This
slips by in the distribution because most devel-
opers compile with warnings off. Usually, these
can be ignored.

If a port doesn’t work, probably there is a miss-
ing header file, prototype, or function. You need
to supply what is missing. Suppose you have a
“foobiac” computer. You should make a new file
“Make2.foobiac” that defines the compiler switches.
In CFLAGS, you should define “FOOBIAC” to se-
lect your patches. You should change “Makefile” to

63

make the directory “FOOBIAC” for the .o files and
the special “Makefile”. You should also add a few
lines so when you type “make foobiac” in the “src”
directory it builds the special “Makefile” then does
(cd FOOBIAC; make -k) to make the program. Then
you should edit the md unix.h file to make the appro-
priate includes and prototypes for your system. Look
at the files to see how we handle the other systems.
If you do a port please share your patches so I can
add it to the distribution.

If you have a non-unix system you may also need
to change “md.cc” and “md.h” and make some new
files “md foobiac.cc” and “md foobiac.h”. Look at
the files for other systems for a guide to what should
be there. How you handle the “makefile” will depend
on the tools you have.

Some files starting with “plot” contain plotting
drivers are may also need customization if you want a
graphic display. They are all essentially non-working,
but plotibm does work for most PC video cards. If all
you want are ASCII plots the files should be suitable
as they are.

You should place the file “acs.hlp” in any directory
in PATH. ACS uses the environment variable PATH
to find it. Usually the best place is the same directory
as the executable.

There should be NO non-portable code anywhere
but the md * files and plot files. The use of #ifdef
to patch portability problems should be restricted to
the md * and plot files.

64 CHAPTER 5. INSTALLATION

Chapter 6

Technical Notes

6.1 Simulation methods

6.1.1 Transient step control

The basic algorithm

The basis of it is in the files “s tr swp.cc” and
“s tr rev.cc”.

The function TRANSIENT::review sets two vari-
ables: “approxtime” and “control”.

The variable “approxtime” is a suggestion of what
the next time should be. Note that this is a time, not
a difference. Also note that the simulator may over-
ride this suggestion. Another “control” is an enum
that shows how the time was selected. You can probe
control(0) to find this code, or control(1) to see how
many steps (not iterations) it calculated internally.

This time may be in the future, past, or again at
the present time, depending on conditions. A time
in the future means all is well, and the simulation
can proceed as expected. A time in the past indi-
cates something is wrong, such as convergence fail-
ure, excessive truncation error, or a missed event. In
this case, the step is rejected, and time backed up.
A repeat at the present time usually means a laten-
cy check failed. A portion of the circuit that was
thought to be latent was found to be active. This
usually indicates a model problem.

First, it attempts to suggest a time “rtime” based
on iteration count and options.

There are several “options” that control the step-
ping:

• iterations > itl4 ... reduce by option
”trstepshrink”.

• iterations > itl3 ... suggest the same step as last
time.

• else (iterations <= itl3) ... increase step size.
Try the max as per userstepsize/skip limit to
larger of (rdt*trstepgrow) where “rdt” is the old
“review” estimate or (oldstep*trstepgrow) where
oldstep is what was actually used last time and
trstepgrow is an option, from the options com-
mand.

Second it makes another suggestion “tetime” based
on truncation error, etc. It does this by calling the
“review” function for all components, and taking the
minimum. Any component can suggest a time for
its next evaluation with its review function. Most
components return a very large number, letting the
capacitors and inductors dominate, but it is not re-
quired for it to be so. This time should be in the
future, but errors could produce a time in the past.

Then, the earliest time of the above two methods is
selected. A time in the past means to reject the most
recent time step and back up, but note that this time
is only a suggestion that may not be used.

The function “TRANSIENT::sweep” essentially
processes the loop “for (first(); notpastend; nex-
t())”. The function “TRANSIENT::next()” actual-
ly advances (hopefully) to the next step. It may go
backwards.

The actual time step depends on the suggestion by
the review function (approxtime), the event queue
(which includes what Spice calls “breakpoints”), the
user step size (nexttick), and some tricks to minimize
changes.

Some considerations ...

65

66 CHAPTER 6. TECHNICAL NOTES

• Changing the step size is an expensive operation,
because it usually forces a full LU decomposi-
tion and matrix reload. If the step can be kept
constant, changes are limited to the right-side,
eliminating the need for the full evaluation and
LU.

• The simulator will place a time step exactly at
any step for which the user has requested output,
or Fourier analysis needs a point, or at any event
from the event queue.

So, here it is ...
Assume we want it at the time the user request-

ed. If the event queue says to do it sooner, take it,
else take the user time. Note that this time is needed
exactly, either now or later. If the “approxtime” is
sooner than the exact time, inject a time step as fol-
lows... if the time step is less than half of the time to
when an exact time is needed, take the approxtime,
else take half of the exact interval, in hopes that the
next step will use up the other half.

After that, there are some checks
“Very backward time step” means that the sug-

gested new step is earlier than the PREVIOUS step,
meaning that both the current step and its predeces-
sor are rejected, thus it should back up two steps.
Since ACS can back up only one step, it rejects the
most recent step and tries again at the minimum step
size. This usually means there is a bug in the soft-
ware.

“Backwards time step” means to reject the most
recent step, but the one before that is ok. It will reject
the step and try again at the smaller interval. This
happens fairly often, usually due to slow convergence.

“Zero time step” means that the new time is the
same as the previous time, which usually means there
is a bug in the software. Something is requesting a
re-evaluation at the same time.

The combination of “zero time step” and “very
backward time step” means that the re-evaluation
didn’t work.

Now, accept the new time and proceed.

The “review” function

Every component can have a “review” function, in
which it can determine whether to accept or reject
the solution. It will accept by suggesting a time in

the future, or reject by suggesting a time in the past.
It returns the suggested time. It can call new event
to request an exact time.

For capacitors and inductors, the review function
attempts to estimate truncation error using a divid-
ed difference method, and it suggests a time for the
next solution that will result in meeting the error re-
quirement. Occasionally, it will discover that the step
just computed fails to meet the requirement, so it will
reject it.

Truncation error is related to the third derivative
of charge or flux. Since current is the first deriva-
tive of charge, it would seem that second derivative
of current should produce the same results faster. In
practice, the current based method tends to estimate
high leading to smaller steps, and the charge based
method tends to estimate low, leading to larger step-
s. The conservative approach would suggest using
the current based method, but that sometimes led to
unreasonably small steps ans slow simulations, so I
chose (as Spice did) the other method. Either method
is ok when the step size used is close to being reason-
able, but when the trial step is unreasonably large,
either approach gives a very poor estimate. Taking
a step much too small will make the simulator run
much slower, as it takes many steps, then the step
size is allowed to grow slowly. This is slower both
because of the many unnecessary steps, and because
of many adjustments. Taking a step that is much too
large will result in a choice that is better than the
first trial, which will make a better estimate and be
rejected. It is rare to get more than one rejection
based on truncation error.

Conclusion

ACS will usually do more time steps than Spice will,
due to 2 factors. ACS will force calculations at print
points and fourier points, and can reject a bad step.
It is usually a little more, but could be as much as
twice as many steps.

A future revision will add another check, which will
give a third estimate based on voltage changes.

6.3. PERFORMANCE 67

6.2 Data Structures

6.2.1 Parts list

Main parts list

The primary data storage is in a list of “cards”. A
card is anything that can appear in a net list. Cards
live here, primarily, but there are some other auxilary
lists that also contain pointers to cards.

The list stores pointers, rather than actual objects,
because there are many types of cards. All are de-
rived, through several levels of inheritance, from the
“card”.

Usually, they are stored in the order they are read
from the file, except for subcircuits, which are stored
in separate lists to preserve the hierarchy.

As of release 0.24, the main list is in static storage,
so there can be only one. This will change. New cards
can be inserted anywhere in the list, but usually they
are inserted at the end. The mechanism for marking
the location is a hybrid of STL and a 15 year old
pointer scheme, which will also change someday.

The “Common” and “Eval” classes

The “common” serves two distinct purposes. The
first is to share storage for similar devices. The sec-
ond is to attach “evaluators” to otherwise simple
components for special behavior.

Most circuits have many identical elements. The
“common” enables them to share storage. One “com-
mon” can be attached to many devices. When a new
device is created, even if it is parses separately, an at-
tempt is made to find an appropriate device to share
with.

Simple elements like resistors and capacitors can
have “evaluators” attached as commons. These e-
valuators calculate a function and its derivative, and
return it in a standard form. Some evaluators are
used internally, such as in the diode and mosfet mod-
els. Some are used explicitly, such as in behavioral
modeling.

6.3 Performance

This section gives some notes on some of the perfor-
mance issues in ACS. It is not intended to be com-
plete or well organized.

6.3.1 Virtual functions

There is a question of the impact on speed from the
use of virtual functions. The experiment used here
is to use the circuit eq4-2305.ckt from the exam-
ples directory, and try several modified versions of the
program. I used a 100 point dc sweep, a version be-
tween 0.20 and 0.21, and made several modifications
for testing purposes. I chose this circuit because it
has little to mask the effect, and therefore is sort of
a worst case.

I added an int foo to the element class. I made
the function il trload source call a virtual func-
tion virtual test and stored the result. The local
version body has a print call, which should not show,
to make sure it calls the other. These functions sim-
ply return a constant, determined by which version
of the function is called. Run time is compared, with
and without this.

With 1 virtual function call (included in load)

user sys total
evaluate 13.45 0.11 13.56

load 13.40 0.06 13.47
lu 1.91 0.09 2.00

back 22.35 0.27 22.61
review 0.00 0.00 0.00
output 0.11 0.11 0.22

overhead 0.23 0.19 0.42
total 51.45 0.83 52.28

With 10 virtual function calls (included in load)

user sys total
evaluate 13.47 0.09 13.57

load 24.69 0.17 24.87
lu 2.09 0.02 2.11

back 22.17 0.35 22.51
review 0.00 0.00 0.00
output 0.14 0.11 0.25

overhead 0.25 0.25 0.50
total 62.82 0.99 63.81

No extra function calls (included in load)

user sys total
evaluate 13.41 0.09 13.50

load 11.75 0.05 11.79
lu 2.04 0.03 2.07

back 22.51 0.33 22.84

68 CHAPTER 6. TECHNICAL NOTES

review 0.00 0.00 0.00
output 0.08 0.11 0.19

overhead 0.31 0.25 0.56
total 50.10 0.86 50.96

My conclusion is that in this context, even a single
virtual function call is significant (10-15% of the load
time), but not so significant as to prohibit their use.
The load loop here calls one virtual function inside a
loop. The virtual function calls an ordinary member
function. Therefore, about 30% of the load time is
function call overhead.

The impact should be less significant for complex
models like transistors because the calculation time
is much higher and would serve to hide this better.

Spice uses a different architecture, where a single
function evaluates and loads all elements of a given
type. This avoids these two calls.

6.3.2 Inline functions

For this test, il trload source is not inline. Con-
trast to ”No extra function calls” and ”1 virtual func-
tion” above, in which this function is inline.

user sys total
evaluate 13.44 0.15 13.60

load 13.85 0.14 13.99
lu 1.73 0.02 1.75

back 22.89 0.35 23.24
review 0.00 0.00 0.00

overhead 0.45 0.17 0.63
total 52.50 0.94 53.44

This shows (crudely) that the overhead of an ordi-
nary private member function call (called from anoth-
er member function in the same class) is significant
here. The cost of a virtual function call is comparable
to the cost of an ordinary private member function
call.

